File size: 7,660 Bytes
823b52c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e43436
823b52c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e5770
823b52c
b7e5770
823b52c
b7e5770
 
823b52c
 
b7e5770
 
 
 
 
 
 
 
 
 
 
 
 
 
823b52c
 
b7e5770
 
 
 
 
 
823b52c
 
b7e5770
 
 
 
 
8e654a1
b7e5770
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import pandas as pd
import os
import re
from huggingface_hub import InferenceClient

class DataProcessor:
    INTERVENTION_COLUMN = 'Did the intervention happen today?'
    ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)'
    PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)'
    NOT_ENGAGED_STR = 'Not Engaged (less than 50%)'

    def __init__(self):
        self.hf_api_key = os.getenv('HF_API_KEY')
        if not self.hf_api_key:
            raise ValueError("HF_API_KEY not set in environment variables")
        self.client = InferenceClient(api_key=self.hf_api_key)

    def read_excel(self, uploaded_file):
        return pd.read_excel(uploaded_file)

    def format_session_data(self, df):
        df['Date of Session'] = self.safe_convert_to_datetime(df['Date of Session'], '%m/%d/%Y')
        df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
        df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
        df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
        df = df[['Date of Session', 'Timestamp'] + [col for col in df.columns if col not in ['Date of Session', 'Timestamp']]]
        return df

    def safe_convert_to_time(self, series, format_str='%I:%M %p'):
        try:
            converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
            if format_str:
                return converted.dt.strftime(format_str)
            return converted
        except Exception as e:
            print(f"Error converting series to time: {e}")
            return series

    def safe_convert_to_datetime(self, series, format_str=None):
        try:
            converted = pd.to_datetime(series, errors='coerce')
            if format_str:
                return converted.dt.strftime(format_str)
            return converted
        except Exception as e:
            print(f"Error converting series to datetime: {e}")
            return series

    def replace_student_names_with_initials(self, df):
        updated_columns = []
        for col in df.columns:
            if col.startswith('Student Attendance'):
                match = re.match(r'Student Attendance \[(.+?)\]', col)
                if match:
                    name = match.group(1)
                    name_parts = name.split()
                    if len(name_parts) == 1:
                        initials = name_parts[0][0]
                    else:
                        initials = ''.join([part[0] for part in name_parts])
                    updated_columns.append(f'Student Attendance [{initials}]')
                else:
                    updated_columns.append(col)
            else:
                updated_columns.append(col)
        df.columns = updated_columns
        return df

    def compute_intervention_statistics(self, df):
        total_days = len(df)
        sessions_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum()
        sessions_not_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('no').sum()
        intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
        intervention_frequency = round(intervention_frequency, 0)

        stats = {
            'Intervention Frequency (%)': [intervention_frequency],
            'Intervention Sessions Held': [sessions_held],
            'Intervention Sessions Not Held': [sessions_not_held],
            'Total Number of Days Available': [total_days]
        }
        return pd.DataFrame(stats)

    def compute_student_metrics(self, df):
        intervention_df = df[df[self.INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
        intervention_sessions_held = len(intervention_df)
        student_columns = [col for col in df.columns if col.startswith('Student Attendance')]

        student_metrics = {}
        for col in student_columns:
            student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
            student_data = intervention_df[[col]].copy()
            student_data[col] = student_data[col].fillna('Absent')

            attendance_values = student_data[col].apply(lambda x: 1 if x in [
                self.ENGAGED_STR,
                self.PARTIALLY_ENGAGED_STR,
                self.NOT_ENGAGED_STR
            ] else 0)

            sessions_attended = attendance_values.sum()
            attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
            attendance_pct = round(attendance_pct)

            engagement_counts = {
                'Engaged': 0,
                'Partially Engaged': 0,
                'Not Engaged': 0,
                'Absent': 0
            }

            for x in student_data[col]:
                if x == self.ENGAGED_STR:
                    engagement_counts['Engaged'] += 1
                elif x == self.PARTIALLY_ENGAGED_STR:
                    engagement_counts['Partially Engaged'] += 1
                elif x == self.NOT_ENGAGED_STR:
                    engagement_counts['Not Engaged'] += 1
                else:
                    engagement_counts['Absent'] += 1 # Count as Absent if not engaged

            # Calculate percentages for engagement states
            total_sessions = sum(engagement_counts.values())
            
            # Engagement (%)
            engagement_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
            engagement_pct = round(engagement_pct)
    
            engaged_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
            engaged_pct = round(engaged_pct)
    
            partially_engaged_pct = (engagement_counts['Partially Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
            partially_engaged_pct = round(partially_engaged_pct)
    
            not_engaged_pct = (engagement_counts['Not Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
            not_engaged_pct = round(not_engaged_pct)
    
            absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
            absent_pct = round(absent_pct)
    
            # Store metrics in the required order
            student_metrics[student_name] = {
                'Attendance (%)': attendance_pct,
                'Attendance #': sessions_attended,  # Raw number of sessions attended
                'Engagement (%)': engagement_pct,
                'Engaged (%)': engaged_pct,
                'Partially Engaged (%)': partially_engaged_pct,
                'Not Engaged (%)': not_engaged_pct,
                'Absent (%)': absent_pct
            }

        # Create a DataFrame from student_metrics
        student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
        student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
        return student_metrics_df
    
    def compute_average_metrics(self, student_metrics_df):
        # Calculate the attendance and engagement average percentages across students
        attendance_avg_stats = student_metrics_df['Attendance (%)'].mean()  # Calculate the average attendance percentage
        engagement_avg_stats = student_metrics_df['Engagement (%)'].mean()  # Calculate the average engagement percentage
        
        # Round the averages to make them whole numbers
        attendance_avg_stats = round(attendance_avg_stats)
        engagement_avg_stats = round(engagement_avg_stats)
        
        return attendance_avg_stats, engagement_avg_stats