File size: 7,660 Bytes
823b52c 6e43436 823b52c b7e5770 823b52c b7e5770 823b52c b7e5770 823b52c b7e5770 823b52c b7e5770 823b52c b7e5770 8e654a1 b7e5770 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import pandas as pd
import os
import re
from huggingface_hub import InferenceClient
class DataProcessor:
INTERVENTION_COLUMN = 'Did the intervention happen today?'
ENGAGED_STR = 'Engaged (Respect, Responsibility, Effort)'
PARTIALLY_ENGAGED_STR = 'Partially Engaged (about 50%)'
NOT_ENGAGED_STR = 'Not Engaged (less than 50%)'
def __init__(self):
self.hf_api_key = os.getenv('HF_API_KEY')
if not self.hf_api_key:
raise ValueError("HF_API_KEY not set in environment variables")
self.client = InferenceClient(api_key=self.hf_api_key)
def read_excel(self, uploaded_file):
return pd.read_excel(uploaded_file)
def format_session_data(self, df):
df['Date of Session'] = self.safe_convert_to_datetime(df['Date of Session'], '%m/%d/%Y')
df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
df = df[['Date of Session', 'Timestamp'] + [col for col in df.columns if col not in ['Date of Session', 'Timestamp']]]
return df
def safe_convert_to_time(self, series, format_str='%I:%M %p'):
try:
converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
if format_str:
return converted.dt.strftime(format_str)
return converted
except Exception as e:
print(f"Error converting series to time: {e}")
return series
def safe_convert_to_datetime(self, series, format_str=None):
try:
converted = pd.to_datetime(series, errors='coerce')
if format_str:
return converted.dt.strftime(format_str)
return converted
except Exception as e:
print(f"Error converting series to datetime: {e}")
return series
def replace_student_names_with_initials(self, df):
updated_columns = []
for col in df.columns:
if col.startswith('Student Attendance'):
match = re.match(r'Student Attendance \[(.+?)\]', col)
if match:
name = match.group(1)
name_parts = name.split()
if len(name_parts) == 1:
initials = name_parts[0][0]
else:
initials = ''.join([part[0] for part in name_parts])
updated_columns.append(f'Student Attendance [{initials}]')
else:
updated_columns.append(col)
else:
updated_columns.append(col)
df.columns = updated_columns
return df
def compute_intervention_statistics(self, df):
total_days = len(df)
sessions_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('yes').sum()
sessions_not_held = df[self.INTERVENTION_COLUMN].str.strip().str.lower().eq('no').sum()
intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
intervention_frequency = round(intervention_frequency, 0)
stats = {
'Intervention Frequency (%)': [intervention_frequency],
'Intervention Sessions Held': [sessions_held],
'Intervention Sessions Not Held': [sessions_not_held],
'Total Number of Days Available': [total_days]
}
return pd.DataFrame(stats)
def compute_student_metrics(self, df):
intervention_df = df[df[self.INTERVENTION_COLUMN].str.strip().str.lower() == 'yes']
intervention_sessions_held = len(intervention_df)
student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
student_metrics = {}
for col in student_columns:
student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
student_data = intervention_df[[col]].copy()
student_data[col] = student_data[col].fillna('Absent')
attendance_values = student_data[col].apply(lambda x: 1 if x in [
self.ENGAGED_STR,
self.PARTIALLY_ENGAGED_STR,
self.NOT_ENGAGED_STR
] else 0)
sessions_attended = attendance_values.sum()
attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
attendance_pct = round(attendance_pct)
engagement_counts = {
'Engaged': 0,
'Partially Engaged': 0,
'Not Engaged': 0,
'Absent': 0
}
for x in student_data[col]:
if x == self.ENGAGED_STR:
engagement_counts['Engaged'] += 1
elif x == self.PARTIALLY_ENGAGED_STR:
engagement_counts['Partially Engaged'] += 1
elif x == self.NOT_ENGAGED_STR:
engagement_counts['Not Engaged'] += 1
else:
engagement_counts['Absent'] += 1 # Count as Absent if not engaged
# Calculate percentages for engagement states
total_sessions = sum(engagement_counts.values())
# Engagement (%)
engagement_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
engagement_pct = round(engagement_pct)
engaged_pct = (engagement_counts['Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
engaged_pct = round(engaged_pct)
partially_engaged_pct = (engagement_counts['Partially Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
partially_engaged_pct = round(partially_engaged_pct)
not_engaged_pct = (engagement_counts['Not Engaged'] / total_sessions * 100) if total_sessions > 0 else 0
not_engaged_pct = round(not_engaged_pct)
absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
absent_pct = round(absent_pct)
# Store metrics in the required order
student_metrics[student_name] = {
'Attendance (%)': attendance_pct,
'Attendance #': sessions_attended, # Raw number of sessions attended
'Engagement (%)': engagement_pct,
'Engaged (%)': engaged_pct,
'Partially Engaged (%)': partially_engaged_pct,
'Not Engaged (%)': not_engaged_pct,
'Absent (%)': absent_pct
}
# Create a DataFrame from student_metrics
student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
return student_metrics_df
def compute_average_metrics(self, student_metrics_df):
# Calculate the attendance and engagement average percentages across students
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Calculate the average attendance percentage
engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() # Calculate the average engagement percentage
# Round the averages to make them whole numbers
attendance_avg_stats = round(attendance_avg_stats)
engagement_avg_stats = round(engagement_avg_stats)
return attendance_avg_stats, engagement_avg_stats |