ProfessorLeVesseur
commited on
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from app_config import AppConfig
|
3 |
+
from data_processor import DataProcessor
|
4 |
+
from visualization import Visualization
|
5 |
+
from ai_analysis import AIAnalysis
|
6 |
+
|
7 |
+
def main():
|
8 |
+
# Initialize the app configuration
|
9 |
+
app_config = AppConfig()
|
10 |
+
|
11 |
+
# Initialize the data processor
|
12 |
+
data_processor = DataProcessor()
|
13 |
+
|
14 |
+
# Initialize the visualization handler
|
15 |
+
visualization = Visualization()
|
16 |
+
|
17 |
+
# Initialize the AI analysis handler
|
18 |
+
ai_analysis = AIAnalysis(data_processor.client)
|
19 |
+
|
20 |
+
st.title("Intervention Program Analysis")
|
21 |
+
|
22 |
+
# File uploader
|
23 |
+
uploaded_file = st.file_uploader("Upload your Excel file", type=["xlsx"])
|
24 |
+
|
25 |
+
if uploaded_file is not None:
|
26 |
+
try:
|
27 |
+
# Read the Excel file into a DataFrame
|
28 |
+
df = data_processor.read_excel(uploaded_file)
|
29 |
+
|
30 |
+
# Format the session data
|
31 |
+
df = data_processor.format_session_data(df)
|
32 |
+
|
33 |
+
# Replace student names with initials
|
34 |
+
df = data_processor.replace_student_names_with_initials(df)
|
35 |
+
|
36 |
+
st.subheader("Uploaded Data")
|
37 |
+
st.write(df)
|
38 |
+
|
39 |
+
# Ensure expected column is available
|
40 |
+
if DataProcessor.INTERVENTION_COLUMN not in df.columns:
|
41 |
+
st.error(f"Expected column '{DataProcessor.INTERVENTION_COLUMN}' not found.")
|
42 |
+
return
|
43 |
+
|
44 |
+
# Compute Intervention Session Statistics
|
45 |
+
intervention_stats = data_processor.compute_intervention_statistics(df)
|
46 |
+
st.subheader("Intervention Session Statistics")
|
47 |
+
st.write(intervention_stats)
|
48 |
+
|
49 |
+
# Plot and download intervention statistics
|
50 |
+
intervention_fig = visualization.plot_intervention_statistics(intervention_stats)
|
51 |
+
visualization.download_chart(intervention_fig, "intervention_statistics_chart.png")
|
52 |
+
|
53 |
+
# Compute Student Metrics
|
54 |
+
student_metrics_df = data_processor.compute_student_metrics(df)
|
55 |
+
st.subheader("Student Metrics")
|
56 |
+
st.write(student_metrics_df)
|
57 |
+
|
58 |
+
# Compute Student Metric Averages
|
59 |
+
attendance_avg_stats, engagement_avg_stats = data_processor.compute_average_metrics(student_metrics_df)
|
60 |
+
|
61 |
+
# Plot and download student metrics
|
62 |
+
student_metrics_fig = visualization.plot_student_metrics(student_metrics_df, attendance_avg_stats, engagement_avg_stats)
|
63 |
+
visualization.download_chart(student_metrics_fig, "student_metrics_chart.png")
|
64 |
+
|
65 |
+
# Prepare input for the language model
|
66 |
+
llm_input = ai_analysis.prepare_llm_input(student_metrics_df)
|
67 |
+
|
68 |
+
# Generate Notes and Recommendations using Hugging Face LLM
|
69 |
+
with st.spinner("Generating AI analysis..."):
|
70 |
+
recommendations = ai_analysis.prompt_response_from_hf_llm(llm_input)
|
71 |
+
|
72 |
+
st.subheader("AI Analysis")
|
73 |
+
st.markdown(recommendations)
|
74 |
+
|
75 |
+
# Download AI output
|
76 |
+
ai_analysis.download_llm_output(recommendations, "llm_output.txt")
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
st.error(f"Error reading the file: {str(e)}")
|
80 |
+
|
81 |
+
if __name__ == '__main__':
|
82 |
+
main()
|