import cv2 import gradio as gr import numpy as np import onnxruntime import requests from huggingface_hub import hf_hub_download from PIL import Image # Get x_scale_factor & y_scale_factor to resize image def get_scale_factor(im_h, im_w, ref_size=512): if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size: if im_w >= im_h: im_rh = ref_size im_rw = int(im_w / im_h * ref_size) elif im_w < im_h: im_rw = ref_size im_rh = int(im_h / im_w * ref_size) else: im_rh = im_h im_rw = im_w im_rw = im_rw - im_rw % 32 im_rh = im_rh - im_rh % 32 x_scale_factor = im_rw / im_w y_scale_factor = im_rh / im_h return x_scale_factor, y_scale_factor MODEL_PATH = hf_hub_download('nateraw/background-remover-files', 'modnet.onnx', repo_type='dataset') def main(image_path, threshold): # read image im = cv2.imread(image_path) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) # unify image channels to 3 if len(im.shape) == 2: im = im[:, :, None] if im.shape[2] == 1: im = np.repeat(im, 3, axis=2) elif im.shape[2] == 4: im = im[:, :, 0:3] # normalize values to scale it between -1 to 1 im = (im - 127.5) / 127.5 im_h, im_w, im_c = im.shape x, y = get_scale_factor(im_h, im_w) # resize image im = cv2.resize(im, None, fx=x, fy=y, interpolation=cv2.INTER_AREA) # prepare input shape im = np.transpose(im) im = np.swapaxes(im, 1, 2) im = np.expand_dims(im, axis=0).astype('float32') # Initialize session and get prediction session = onnxruntime.InferenceSession(MODEL_PATH, None) input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name result = session.run([output_name], {input_name: im}) # refine matte matte = (np.squeeze(result[0]) * 255).astype('uint8') matte = cv2.resize(matte, dsize=(im_w, im_h), interpolation=cv2.INTER_AREA) # HACK - Could probably just convert this to PIL instead of writing cv2.imwrite('out.png', matte) image = Image.open(image_path) matte = Image.open('out.png') # obtain predicted foreground image = np.asarray(image) if len(image.shape) == 2: image = image[:, :, None] if image.shape[2] == 1: image = np.repeat(image, 3, axis=2) elif image.shape[2] == 4: image = image[:, :, 0:3] b, g, r = cv2.split(image) mask = np.asarray(matte) a = np.ones(mask.shape, dtype='uint8') * 255 alpha_im = cv2.merge([b, g, r, a], 4) bg = np.zeros(alpha_im.shape) new_mask = np.stack([mask, mask, mask, mask], axis=2) foreground = np.where(new_mask > threshold, alpha_im, bg).astype(np.uint8) return Image.fromarray(foreground) title = "MODNet Background Remover" description = "Gradio demo for MODNet, a model that can remove the background from a given image. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "
Github Repo | MODNet: Real-Time Trimap-Free Portrait Matting via Objective Decomposition
" url = "https://huggingface.co/datasets/nateraw/background-remover-files/resolve/main/twitter_profile_pic.jpeg" image = Image.open(requests.get(url, stream=True).raw) image.save('twitter_profile_pic.jpg') url = "https://upload.wikimedia.org/wikipedia/commons/8/8d/President_Barack_Obama.jpg" image = Image.open(requests.get(url, stream=True).raw) image.save('obama.jpg') interface = gr.Interface( fn=main, inputs=[ gr.inputs.Image(type='filepath'), gr.inputs.Slider(minimum=0, maximum=250, default=100, step=5, label='Mask Cutoff Threshold'), ], outputs='image', examples=[['twitter_profile_pic.jpg', 120], ['obama.jpg', 155]], title=title, description=description, article=article, ) if __name__ == '__main__': interface.launch(debug=True)