File size: 5,987 Bytes
6a0ec6a 9002697 6a0ec6a 1767e22 5a55ea7 6349cf9 8912157 6349cf9 5a55ea7 9002697 8912157 5a55ea7 28200f6 5a55ea7 8912157 5a55ea7 1767e22 8912157 5a55ea7 28200f6 8912157 28200f6 5a55ea7 20e319d 8912157 5a55ea7 28200f6 5a55ea7 8912157 5a55ea7 28200f6 8912157 28200f6 20e319d 5a55ea7 20e319d 5a55ea7 20e319d 5a55ea7 20e319d 5a55ea7 20e319d 8912157 5a55ea7 28200f6 8912157 28200f6 5a55ea7 edb7e14 5a55ea7 6349cf9 1f7ee11 5a55ea7 9002697 1f7ee11 5a55ea7 1767e22 5a55ea7 1767e22 5a55ea7 1767e22 5a55ea7 6a0ec6a 0380e03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
import gradio as gr
from sqlalchemy import text, inspect
from smolagents import tool, CodeAgent, HfApiModel
import pandas as pd
import tempfile
from database import engine, initialize_database
# Ensure the database initializes (won't crash if empty)
initialize_database()
# SQL Execution Tool (FIXED - Defined BEFORE Use)
@tool
def sql_engine(query: str) -> str:
"""
Executes an SQL SELECT query and returns the results.
Args:
query (str): The SQL query string to execute. Only SELECT queries are allowed.
Returns:
str: A formatted string containing the query results, or an error message if the query fails.
"""
try:
with engine.connect() as con:
rows = con.execute(text(query)).fetchall()
if not rows:
return "No results found."
return "\n".join([", ".join(map(str, row)) for row in rows])
except Exception as e:
return f"Error: {str(e)}"
# Initialize CodeAgent for SQL query generation (Moved Below `sql_engine`)
agent = CodeAgent(
tools=[sql_engine],
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)
# Function to execute an uploaded SQL script
def execute_sql_script(file_path):
"""
Executes an uploaded SQL file to initialize the database.
Args:
file_path (str): Path to the SQL file.
Returns:
str: Success message or error description.
"""
try:
with engine.connect() as con:
with open(file_path, "r") as f:
sql_script = f.read()
con.execute(text(sql_script))
return "SQL file executed successfully. Database updated."
except Exception as e:
return f"Error: {str(e)}"
# Function to get table names dynamically
def get_table_names():
"""
Returns a list of tables available in the database.
Returns:
list: List of table names.
"""
inspector = inspect(engine)
return inspector.get_table_names()
# Function to get table schema dynamically
def get_table_schema(table_name):
"""
Returns a list of column names for a given table.
Args:
table_name (str): Name of the table.
Returns:
list: List of column names.
"""
inspector = inspect(engine)
columns = inspector.get_columns(table_name)
return [col["name"] for col in columns]
# Function to fetch data dynamically from any table
def get_table_data(table_name):
"""
Retrieves all rows from a specified table as a Pandas DataFrame.
Args:
table_name (str): Name of the table.
Returns:
pd.DataFrame: Table data or an error message.
"""
try:
with engine.connect() as con:
result = con.execute(text(f"SELECT * FROM {table_name}"))
rows = result.fetchall()
columns = get_table_schema(table_name)
if not rows:
return pd.DataFrame(columns=columns)
return pd.DataFrame(rows, columns=columns)
except Exception as e:
return pd.DataFrame({"Error": [str(e)]})
# Function to handle SQL file uploads and execute them
def handle_file_upload(file):
"""
Handles SQL file upload, executes SQL, and updates database schema.
Args:
file (File): Uploaded SQL file.
Returns:
tuple: Execution result message and updated table data.
"""
temp_file_path = tempfile.mkstemp(suffix=".sql")[1]
with open(temp_file_path, "wb") as temp_file:
temp_file.write(file.read())
result = execute_sql_script(temp_file_path)
tables = get_table_names()
if tables:
table_data = {table: get_table_data(table) for table in tables}
else:
table_data = {"Error": ["No tables found after execution. Ensure your SQL file creates tables."]}
return result, table_data
# Function to handle natural language to SQL conversion
def query_sql(user_query: str) -> str:
"""
Converts a user's natural language query into an SQL query.
Args:
user_query (str): The question asked by the user.
Returns:
str: The results of the executed SQL query.
"""
tables = get_table_names()
if not tables:
return "Error: No tables found. Please upload an SQL file first."
schema_info = "Available tables and columns:\n"
for table in tables:
columns = get_table_schema(table)
schema_info += f"Table '{table}' has columns: {', '.join(columns)}.\n"
schema_info += "Generate a valid SQL SELECT query using ONLY these column names. DO NOT return anything other than the SQL query itself."
generated_sql = agent.run(f"{schema_info} Convert this request into SQL: {user_query}")
if not isinstance(generated_sql, str) or not generated_sql.strip().lower().startswith(("select", "show", "pragma")):
return "Error: Only SELECT queries are allowed."
return sql_engine(generated_sql)
# Function to handle query input
def handle_query(user_input: str) -> str:
"""
Handles user input and returns the SQL query result.
Args:
user_input (str): User's natural language query.
Returns:
str: The query result or error message.
"""
return query_sql(user_input)
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## SQL Query Interface")
with gr.Row():
user_input = gr.Textbox(label="Ask a question about the data")
query_output = gr.Textbox(label="Result")
user_input.change(fn=handle_query, inputs=user_input, outputs=query_output)
gr.Markdown("## Upload SQL File to Execute")
file_upload = gr.File(label="Upload SQL File")
upload_output = gr.Textbox(label="Execution Result")
# Dynamic table display
table_output = gr.Dataframe(label="Database Tables (Dynamic)")
file_upload.change(fn=handle_file_upload, inputs=file_upload, outputs=[upload_output, table_output])
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|