File size: 5,643 Bytes
6a0ec6a 237bccb 1767e22 6d4e0a3 237bccb 91561ce 6d4e0a3 aefa164 6d4e0a3 a573881 6d4e0a3 a573881 a5b666f a573881 a5b666f a573881 a5b666f 237bccb 6d4e0a3 a5b666f a573881 6d4e0a3 08d132d 6d4e0a3 a5b666f 6d4e0a3 a5b666f 6d4e0a3 a5b666f 6d4e0a3 a5b666f 6d4e0a3 a5b666f 6d4e0a3 a5b666f 6d4e0a3 08d132d 6d4e0a3 a5b666f 6d4e0a3 a5b666f 08d132d 6d4e0a3 237bccb 6d4e0a3 a5b666f 6d4e0a3 f776bb6 6d4e0a3 08d132d 6d4e0a3 a5b666f 6d4e0a3 a5b666f 6d4e0a3 a5b666f 6d4e0a3 a5b666f 6d4e0a3 a5b666f 6d4e0a3 a5b666f 6d4e0a3 811c7ec 6d4e0a3 6d10b4f 91561ce 3df9eeb 6d4e0a3 3df9eeb 6d4e0a3 237bccb d870c12 811c7ec 3df9eeb 6d4e0a3 d870c12 6d4e0a3 a5b666f d870c12 3df9eeb 6d4e0a3 3df9eeb 811c7ec 6a0ec6a 6d4e0a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
import gradio as gr
from sqlalchemy import text
from smolagents import tool, CodeAgent, HfApiModel
import pandas as pd
from io import StringIO
from database import (
engine,
create_dynamic_table,
clear_database,
insert_rows_into_table,
get_table_schema
)
# Initialize the AI agent
agent = CodeAgent(
tools=[], # Required parameter even if empty
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)
def get_data_table():
"""Fetch and return the current table data as DataFrame"""
try:
with engine.connect() as con:
tables = con.execute(text(
"SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
)).fetchall()
if not tables:
return pd.DataFrame()
table_name = tables[0][0]
with engine.connect() as con:
result = con.execute(text(f"SELECT * FROM {table_name}"))
rows = result.fetchall()
columns = result.keys()
return pd.DataFrame(rows, columns=columns) if rows else pd.DataFrame()
except Exception as e:
return pd.DataFrame({"Error": [str(e)]})
def process_txt_file(file_path):
"""Analyze text file and convert to structured table"""
try:
with open(file_path, 'r') as f:
content = f.read()
# First pass: Structure detection
structure_prompt = f"""
Analyze this text and convert it into a structured table format:
{content}
Return ONLY valid CSV format with appropriate headers.
Maintain original data types and relationships.
"""
csv_output = agent.run(structure_prompt)
# Convert to DataFrame
df = pd.read_csv(StringIO(csv_output))
# Second pass: Data validation
validation_prompt = f"""
Validate this structured data:
{df.head().to_csv()}
Fix any formatting issues and return corrected CSV.
"""
corrected_csv = agent.run(validation_prompt)
df = pd.read_csv(StringIO(corrected_csv))
# Clear existing data and create new table
clear_database()
table = create_dynamic_table(df)
insert_rows_into_table(df.to_dict('records'), table)
return True, "Text analyzed successfully!", df
except Exception as e:
return False, f"Error: {str(e)}", pd.DataFrame()
def handle_upload(file_obj):
"""Handle file upload and processing"""
if file_obj is None:
return "Please upload a text file.", None, "No schema", gr.update(visible=True), gr.update(visible=False)
success, message, df = process_txt_file(file_obj)
if success:
column_info = {col: {'type': str(df[col].dtype)} for col in df.columns}
schema = "\n".join([f"- {col} ({info['type']})" for col, info in column_info.items()])
return (
message,
df,
f"### Detected Schema:\n```\n{schema}\n```",
gr.update(visible=False),
gr.update(visible=True)
)
return message, None, "No schema", gr.update(visible=True), gr.update(visible=False)
def query_analysis(user_query: str) -> str:
"""Handle natural language queries about the data"""
try:
df = get_data_table()
if df.empty:
return "No data available. Upload a text file first."
analysis_prompt = f"""
Analyze this dataset:
{df.head().to_csv()}
Question: {user_query}
Provide a detailed answer considering:
- Data patterns and relationships
- Statistical measures where applicable
- Clear numerical formatting
- Natural language explanations
Structure your response with:
1. Direct answer first
2. Supporting analysis
3. Data references
"""
return agent.run(analysis_prompt)
except Exception as e:
return f"Analysis error: {str(e)}"
# Create Gradio interface
with gr.Blocks() as demo:
with gr.Group() as upload_group:
gr.Markdown("""
# Text Data Analyzer
Upload any text document containing structured information:
- Reports
- Log files
- Research data
- Meeting notes with tabular content
""")
file_input = gr.File(label="Upload Text File", file_types=[".txt"], type="filepath")
status = gr.Textbox(label="Processing Status", interactive=False)
with gr.Group(visible=False) as query_group:
with gr.Row():
with gr.Column(scale=1):
user_input = gr.Textbox(label="Ask about the data")
query_output = gr.Markdown(label="Analysis Results")
with gr.Column(scale=2):
gr.Markdown("### Extracted Data Preview")
data_table = gr.Dataframe(interactive=False)
schema_display = gr.Markdown()
refresh_btn = gr.Button("Refresh View")
# Event handlers
file_input.upload(
fn=handle_upload,
inputs=file_input,
outputs=[status, data_table, schema_display, upload_group, query_group]
)
user_input.submit(
fn=query_analysis,
inputs=user_input,
outputs=query_output
)
refresh_btn.click(
fn=lambda: (get_data_table(), "Schema refreshed"),
outputs=[data_table, schema_display]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |