TXTAgent / app.py
Quazim0t0's picture
Update app.py
f3a5662 verified
import os
import gradio as gr
from sqlalchemy import text
from smolagents import CodeAgent, HfApiModel
import pandas as pd
from io import StringIO
import tempfile
from database import (
engine,
create_dynamic_table,
clear_database,
insert_rows_into_table
)
# Initialize the AI agent
agent = CodeAgent(
tools=[],
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)
def get_data_table():
"""Fetch and return the current table data as DataFrame"""
try:
with engine.connect() as con:
tables = con.execute(text(
"SELECT name FROM sqlite_master WHERE type='table' AND name NOT LIKE 'sqlite_%'"
)).fetchall()
if not tables:
return pd.DataFrame()
table_name = tables[0][0]
with engine.connect() as con:
result = con.execute(text(f"SELECT * FROM {table_name}"))
rows = result.fetchall()
columns = result.keys()
return pd.DataFrame(rows, columns=columns) if rows else pd.DataFrame()
except Exception as e:
return pd.DataFrame({"Error": [str(e)]})
def process_txt_file(file_path):
"""Analyze text file and convert to structured table"""
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
structure_prompt = f"""
Convert this text into valid CSV format:
{content}
Requirements:
1. First row must be headers
2. Consistent columns per row
3. Quote fields containing commas
4. Maintain original data relationships
Return ONLY the CSV content.
"""
csv_output = agent.run(structure_prompt)
try:
df = pd.read_csv(
StringIO(csv_output),
on_bad_lines='warn',
dtype=str,
encoding_errors='ignore'
).dropna(how='all')
except pd.errors.ParserError as pe:
return False, f"CSV Parsing Error: {str(pe)}", pd.DataFrame()
if df.empty or len(df.columns) == 0:
return False, "No structured data found", pd.DataFrame()
clear_database()
table = create_dynamic_table(df)
insert_rows_into_table(df.to_dict('records'), table)
return True, "Text analyzed successfully!", df.head(10)
except Exception as e:
return False, f"Processing error: {str(e)}", pd.DataFrame()
def handle_upload(file_obj):
"""Handle file upload and processing"""
if file_obj is None:
return [
"Please upload a text file.",
None,
"No schema",
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False)
]
success, message, df = process_txt_file(file_obj)
if success:
schema = "\n".join([f"- {col} (text)" for col in df.columns])
return [
message,
df,
f"### Detected Schema:\n```\n{schema}\n```",
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True)
]
return [
message,
None,
"No schema",
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False)
]
def query_analysis(user_query: str) -> str:
"""Handle natural language queries about the data"""
try:
df = get_data_table()
if df.empty:
return "Please upload and process a file first."
analysis_prompt = f"""
Analyze this data:
{df.head().to_csv()}
Question: {user_query}
Provide:
1. Direct answer
2. Numerical formatting
3. Data references
Use Markdown formatting.
"""
return agent.run(analysis_prompt)
except Exception as e:
return f"Query error: {str(e)}"
def download_csv():
"""Generate CSV file for download"""
df = get_data_table()
if not df.empty:
temp_dir = tempfile.gettempdir()
file_path = os.path.join(temp_dir, "processed_data.csv")
df.to_csv(file_path, index=False)
return file_path
return None
# Gradio interface setup
with gr.Blocks() as demo:
with gr.Group() as upload_group:
gr.Markdown("""
# Text Data Analyzer
Upload unstructured text files to analyze and query their data
""")
file_input = gr.File(
label="Upload Text File",
file_types=[".txt"],
type="filepath"
)
status = gr.Textbox(label="Processing Status", interactive=False)
with gr.Group(visible=False) as query_group:
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
user_input = gr.Textbox(label="Ask about the data", scale=4)
submit_btn = gr.Button("Submit", scale=1)
query_output = gr.Markdown(label="Analysis Results")
with gr.Column(scale=2):
gr.Markdown("### Extracted Data Preview")
data_table = gr.Dataframe(
label="Structured Data",
interactive=False
)
download_btn = gr.DownloadButton(
"Download as CSV",
visible=False
)
schema_display = gr.Markdown()
refresh_btn = gr.Button("Refresh View")
# Event handlers
file_input.upload(
fn=handle_upload,
inputs=file_input,
outputs=[status, data_table, schema_display, upload_group, query_group, download_btn]
)
submit_btn.click(
fn=query_analysis,
inputs=user_input,
outputs=query_output
)
user_input.submit(
fn=query_analysis,
inputs=user_input,
outputs=query_output
)
refresh_btn.click(
fn=lambda: (get_data_table().head(10), "Schema refreshed"),
outputs=[data_table, schema_display]
)
download_btn.click(
fn=download_csv,
outputs=download_btn
)
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True
)