|
import re |
|
import string |
|
import warnings |
|
|
|
|
|
def normalize_number_str(number_str: str) -> float: |
|
|
|
|
|
for char in ["$", "%", ","]: |
|
number_str = number_str.replace(char, "") |
|
try: |
|
return float(number_str) |
|
except ValueError: |
|
print(f"String {number_str} cannot be normalized to number str.") |
|
return float("inf") |
|
|
|
|
|
def split_string( |
|
s: str, |
|
char_list: list[str] = [",", ";"], |
|
) -> list[str]: |
|
pattern = f"[{''.join(char_list)}]" |
|
return re.split(pattern, s) |
|
|
|
|
|
def is_float(element: any) -> bool: |
|
try: |
|
float(element) |
|
return True |
|
except ValueError: |
|
return False |
|
|
|
|
|
def question_scorer( |
|
model_answer: str, |
|
ground_truth: str, |
|
) -> bool: |
|
|
|
if is_float(ground_truth): |
|
normalized_answer = normalize_number_str(str(model_answer)) |
|
return normalized_answer == float(ground_truth) |
|
|
|
|
|
elif any(char in ground_truth for char in [",", ";"]): |
|
|
|
|
|
gt_elems = split_string(ground_truth) |
|
ma_elems = split_string(model_answer) |
|
|
|
|
|
if len(gt_elems) != len(ma_elems): |
|
warnings.warn("Answer lists have different lengths, returning False.", UserWarning) |
|
return False |
|
|
|
|
|
comparisons = [] |
|
for ma_elem, gt_elem in zip(ma_elems, gt_elems): |
|
if is_float(gt_elem): |
|
normalized_ma_elem = normalize_number_str(ma_elem) |
|
comparisons.append(normalized_ma_elem == float(gt_elem)) |
|
else: |
|
|
|
comparisons.append( |
|
normalize_str(ma_elem, remove_punct=False) == normalize_str(gt_elem, remove_punct=False) |
|
) |
|
return all(comparisons) |
|
|
|
|
|
else: |
|
return normalize_str(model_answer) == normalize_str(ground_truth) |
|
|
|
|
|
def check_prediction_contains_answer_letters_in_order(prediction, true_answer): |
|
prediction = prediction.lower() |
|
true_answer = true_answer.lower() |
|
if len(prediction) > len(true_answer) * 3: |
|
return False |
|
i = 0 |
|
for letter in true_answer: |
|
if letter in prediction[i:]: |
|
i += prediction[i:].index(letter) |
|
else: |
|
return False |
|
return True |
|
|
|
|
|
def check_close_call(prediction, true_answer, is_correct): |
|
if is_correct: |
|
return True |
|
else: |
|
if is_float(true_answer): |
|
return is_correct |
|
else: |
|
if ( |
|
check_prediction_contains_answer_letters_in_order(str(prediction), str(true_answer)) |
|
and len(str(true_answer)) * 0.5 <= len(str(prediction)) <= len(str(true_answer)) * 2 |
|
): |
|
print(f"Close call: {prediction} vs {true_answer}") |
|
return True |
|
else: |
|
return False |
|
|
|
|
|
def normalize_str(input_str, remove_punct=True) -> str: |
|
""" |
|
Normalize a string by: |
|
- Removing all white spaces |
|
- Optionally removing punctuation (if remove_punct is True) |
|
- Converting to lowercase |
|
Parameters: |
|
- input_str: str, the string to normalize |
|
- remove_punct: bool, whether to remove punctuation (default: True) |
|
Returns: |
|
- str, the normalized string |
|
""" |
|
|
|
no_spaces = re.sub(r"\s", "", input_str) |
|
|
|
|
|
if remove_punct: |
|
translator = str.maketrans("", "", string.punctuation) |
|
return no_spaces.lower().translate(translator) |
|
else: |
|
return no_spaces.lower() |
|
|