Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import pytesseract
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Load the NLP model for text simplification
|
7 |
+
simplify_model = pipeline("summarization", model="t5-small")
|
8 |
+
|
9 |
+
def process_image(image):
|
10 |
+
"""
|
11 |
+
Extract text from an uploaded image and simplify it.
|
12 |
+
"""
|
13 |
+
# Extract text using Tesseract OCR
|
14 |
+
text = pytesseract.image_to_string(Image.open(image))
|
15 |
+
|
16 |
+
# Check if text is empty
|
17 |
+
if not text.strip():
|
18 |
+
return "No text detected in the image. Please upload a clear image of the text."
|
19 |
+
|
20 |
+
# Simplify the extracted text
|
21 |
+
simplified_text = simplify_model(text, max_length=50, min_length=10, do_sample=False)[0]['summary_text']
|
22 |
+
return simplified_text
|
23 |
+
|
24 |
+
# Create a Gradio interface
|
25 |
+
interface = gr.Interface(
|
26 |
+
fn=process_image,
|
27 |
+
inputs="image",
|
28 |
+
outputs="text",
|
29 |
+
title="Simplify Book Content",
|
30 |
+
description="Upload a photo of a book page to get a simplified explanation in simple English."
|
31 |
+
)
|
32 |
+
|
33 |
+
# Launch the app
|
34 |
+
if __name__ == "__main__":
|
35 |
+
interface.launch()
|