Spaces:
Sleeping
Sleeping
File size: 12,593 Bytes
e74bd37 6dc41f9 db81e26 e74bd37 34c7a66 9e34107 e74bd37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import requests
import gradio as gr
from ragatouille import RAGPretrainedModel
import logging
from pathlib import Path
from time import perf_counter
from sentence_transformers import CrossEncoder
from huggingface_hub import InferenceClient
from jinja2 import Environment, FileSystemLoader
import numpy as np
from os import getenv
from backend.query_llm import generate_hf, generate_qwen
from backend.semantic_search import table, retriever
from huggingface_hub import InferenceClient
# Bhashini API translation function
api_key = getenv('API_KEY')
user_id = getenv('USER_ID')
def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
"""Translates text from source language to target language using the Bhashini API."""
if not text.strip():
print('Input text is empty. Please provide valid text for translation.')
return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
else:
print('Input text - ',text)
print(f'Starting translation process from {from_code} to {to_code}...')
print(f'Starting translation process from {from_code} to {to_code}...')
gr.Warning(f'Translating to {to_code}...')
url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
headers = {
"Content-Type": "application/json",
"userID": user_id,
"ulcaApiKey": api_key
}
payload = {
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
"pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
}
print('Sending initial request to get the pipeline...')
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
print(f'Error in initial request: {response.status_code}')
return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
print('Initial request successful, processing response...')
response_data = response.json()
service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
print(f'Service ID: {service_id}, Callback URL: {callback_url}')
headers2 = {
"Content-Type": "application/json",
response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
}
compute_payload = {
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
"inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
}
print(f'Sending translation request with text: "{text}"')
compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
if compute_response.status_code != 200:
print(f'Error in translation request: {compute_response.status_code}')
return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
print('Translation request successful, processing translation...')
compute_response_data = compute_response.json()
translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
print(f'Translation successful. Translated content: "{translated_content}"')
return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
# Existing chatbot functions
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
proj_dir = Path(__file__).parent
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')
# def add_text(history, text):
# history = [] if history is None else history
# history = history + [(text, None)]
# return history, gr.Textbox(value="", interactive=False)
def bot(history, cross_encoder):
top_rerank = 25
top_k_rank = 20
query = history[-1][0] if history else ''
print('\nQuery: ',query )
print('\nHistory:',history)
if not query:
gr.Warning("Please submit a non-empty string as a prompt")
raise ValueError("Empty string was submitted")
logger.warning('Retrieving documents...')
if cross_encoder == '(HIGH ACCURATE) ColBERT':
gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
documents_full = RAG_db.search(query, k=top_k_rank)
documents = [item['content'] for item in documents_full]
prompt = template.render(documents=documents, query=query)
prompt_html = template_html.render(documents=documents, query=query)
generate_fn = generate_hf
history[-1][1] = ""
for character in generate_fn(prompt, history[:-1]):
history[-1][1] = character
yield history, prompt_html
else:
document_start = perf_counter()
query_vec = retriever.encode(query)
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
query_doc_pair = [[query, doc] for doc in documents]
if cross_encoder == '(FAST) MiniLM-L6v2':
cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
elif cross_encoder == '(ACCURATE) BGE reranker':
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
cross_scores = cross_encoder1.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
document_time = perf_counter() - document_start
prompt = template.render(documents=documents, query=query)
prompt_html = template_html.render(documents=documents, query=query)
#generate_fn = generate_hf
generate_fn=generate_qwen
# Create a new history entry instead of modifying the tuple directly
new_history = history[:-1] + [ (prompt, "") ] # query replaced prompt
output=''
# for character in generate_fn(prompt, history[:-1]):
# #new_history[-1] = (query, character)
# output+=character
output=generate_fn(prompt, history[:-1])
print('Output:',output)
new_history[-1] = (prompt, output) #query replaced with prompt
print('New History',new_history)
#print('prompt html',prompt_html)# Update the last tuple with new text
history_list = list(history[-1])
history_list[1] = output # Assuming `character` is what you want to assign
# Update the history with the modified list converted back to a tuple
history[-1] = tuple(history_list)
#history[-1][1] = character
# yield new_history, prompt_html
yield history, prompt_html
# new_history,prompt_html
# history[-1][1] = ""
# for character in generate_fn(prompt, history[:-1]):
# history[-1][1] = character
# yield history, prompt_html
#def translate_text(response_text, selected_language):
def translate_text(selected_language,history):
iso_language_codes = {
"Hindi": "hi",
"Gom": "gom",
"Kannada": "kn",
"Dogri": "doi",
"Bodo": "brx",
"Urdu": "ur",
"Tamil": "ta",
"Kashmiri": "ks",
"Assamese": "as",
"Bengali": "bn",
"Marathi": "mr",
"Sindhi": "sd",
"Maithili": "mai",
"Punjabi": "pa",
"Malayalam": "ml",
"Manipuri": "mni",
"Telugu": "te",
"Sanskrit": "sa",
"Nepali": "ne",
"Santali": "sat",
"Gujarati": "gu",
"Odia": "or"
}
to_code = iso_language_codes[selected_language]
response_text = history[-1][1] if history else ''
print('response_text for translation',response_text)
translation = bhashini_translate(response_text, to_code=to_code)
return translation['translated_content']
# Gradio interface
with gr.Blocks(theme='gradio/soft') as CHATBOT:
history_state = gr.State([])
with gr.Row():
with gr.Column(scale=10):
gr.HTML(value="""<div style="color: #FF4500;"><h1>Welcome! I am your friend!</h1>Ask me !I will help you<h1><span style="color: #008000">I AM A CHATBOT FOR 9 SCIENCE WITH TRANSLATION IN 22 LANGUAGES</span></h1></div>""")
gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">A free chat bot developed by K.M.RAMYASRI,TGT,GHS.SUTHUKENY using Open source LLMs for 10 std students</p>""")
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;"> Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
with gr.Column(scale=3):
gr.Image(value='logo.png', height=200, width=200)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
bubble_full_width=False,
show_copy_button=True,
show_share_button=True,
)
with gr.Row():
txt = gr.Textbox(
scale=3,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
txt_btn = gr.Button(value="Submit text", scale=1)
cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
language_dropdown = gr.Dropdown(
choices=[
"Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
"Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
"Gujarati", "Odia"
],
value="Hindi", # default to Hindi
label="Select Language for Translation"
)
prompt_html = gr.HTML()
translated_textbox = gr.Textbox(label="Translated Response")
def update_history_and_translate(txt, cross_encoder, history_state, language_dropdown):
print('History state',history_state)
history = history_state
history.append((txt, ""))
#history_state.value=(history)
# Call bot function
# bot_output = list(bot(history, cross_encoder))
bot_output = next(bot(history, cross_encoder))
print('bot_output',bot_output)
#history, prompt_html = bot_output[-1]
history, prompt_html = bot_output
print('History',history)
# Update the history state
history_state[:] = history
# Translate text
translated_text = translate_text(language_dropdown, history)
return history, prompt_html, translated_text
txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
examples = ['WHAT IS DIFFERENCES BETWEEN HOMOGENOUS AND HETEROGENOUS MIXTURE?,'WHAT IS COVALENT BOND?,
EXPLAIN GOLGI APPARATUS]
gr.Examples(examples, txt)
# Launch the Gradio application
CHATBOT.launch(share=True,debug=True)
|