File size: 4,940 Bytes
1ccd1a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import pandas as pd
import yfinance as yf
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.cluster import AgglomerativeClustering
import streamlit as st
import requests
from streamlit_lottie import st_lottie

st.set_page_config(page_title = "Support and resistance levels",
                   page_icon = ':πŸ“ˆ:',
                   layout = 'wide')

st.title('πŸ“ˆ Technical analysis πŸ“‰')
st.header('Find support and resistance levels for :blue[price action] analysis!')
st.divider()

def load_lottieurl(url: str):
    r = requests.get(url)
    if r.status_code != 200:
        return None
    return r.json()

lottie_url__money = "https://assets1.lottiefiles.com/packages/lf20_06a6pf9i.json"
lottie_money = load_lottieurl(lottie_url__money)

st.sidebar.header('Please choose parameters: ')

ticker = st.text_input('Select stock to analyse: (Make sure the ticker you search for is supported by Yahoo! Finance).', 'BNB-USD')

interval = '1h'

num_clusters = st.sidebar.select_slider(
    'Select a number of clusters',
    options=[i for i in range(1,8)])

rolling_wave_length = st.sidebar.select_slider(
    '''Select a length of rolling wave 
    (how much data to cluster at one time)''',
    options=[i for i in range(5, 21)])

period_num = st.sidebar.select_slider(
    'Select number of days to display on chart',
    options=[i for i in range(1, 31)])

period = '{}d'.format(period_num)
df = yf.download(ticker, period = period, interval = interval)
df.index = pd.to_datetime(df.index).strftime("%d-%m-%Y %H:%M")
df = df.drop(columns = ["Adj Close"])

left_column, right_column = st.columns(2)

left_column.markdown('<span style="font-size:20px; font-weight:600; letter-spacing:2px;">Preview data:</span>',
            unsafe_allow_html = True)
left_column.dataframe(df, height = 400)

with right_column:
    st_lottie(lottie_money, key="money")

#creating function
def calculate_support_resistance(df, rolling_wave_length, num_clusters):
    date = df.index
    df.reset_index(inplace=True)
    
    max_waves_temp = df.High.rolling(rolling_wave_length).max().rename('waves')
    min_waves_temp = df.Low.rolling(rolling_wave_length).min().rename('waves')
   
    max_waves = pd.concat([max_waves_temp, pd.Series(np.zeros(len(max_waves_temp)) + 1)], axis=1)
    min_waves = pd.concat([min_waves_temp, pd.Series(np.zeros(len(min_waves_temp)) + -1)], axis=1)
    max_waves.drop_duplicates('waves', inplace=True)
    min_waves.drop_duplicates('waves', inplace=True)
    
    waves = pd.concat([max_waves, min_waves]).sort_index()
    waves = waves[waves[0] != waves[0].shift()].dropna()
    
    x = np.concatenate((waves.waves.values.reshape(-1, 1),
                        (np.zeros(len(waves)) + 1).reshape(-1, 1)), axis=1)
    
    cluster = AgglomerativeClustering(n_clusters=num_clusters, linkage='ward')
    cluster.fit_predict(x)
    waves['clusters'] = cluster.labels_
    waves2 = waves.loc[waves.groupby('clusters')['waves'].idxmax()]
    df.index = date
    waves2.waves.drop_duplicates(keep='first', inplace=True)
    
    return waves2.reset_index().waves
support_resistance_levels = calculate_support_resistance(df, rolling_wave_length, num_clusters)

#creating a plot
fig = make_subplots(rows=2, cols=1, shared_xaxes=True, 
               vertical_spacing=0.06, subplot_titles=('OHLC', 'Volume'), 
               row_width=[0.3, 0.7])

fig.add_trace(go.Candlestick(x=df.index,
                open=df['Open'],
                high=df['High'],
                low=df['Low'],
                close=df['Close'], name = "Market data"), row = 1, col = 1)

fig.update_xaxes(
    rangeslider_visible = False,
    rangeselector=dict(
        buttons=list([
            dict(count=1, label="1d", 
                step="day", stepmode="backward"),
            dict(count=3, label="3d", 
                step="day", stepmode="backward"),
            dict(count=7, label="7d",
                 step="day", stepmode="backward"),
            dict(count=30, label="30d",
                 step="day", stepmode="backward"),
            dict(step="all")])))

i = 0
for level in support_resistance_levels.to_list():
    fig.add_hline(y=level, line_width=1, 
                  line_dash="dash", row=1, col=1,
                  line_color="snow")
    i += 1

colors = []

for i in range(len(df.Close)):
    if i != 0:
        if df.Close[i] > df.Close[i-1]:
            colors.append('lightgreen')
        else:
            colors.append('lightcoral')
    else:
        colors.append('lightcoral')

fig.add_trace(go.Bar(x=df.index, y=df['Volume'], showlegend=False, 
                     marker=dict(color=colors)), row=2, col=1)

fig.update_traces(name= 'Volume', selector=dict(type='bar'))

text = f'{ticker} Chart'

fig.update_layout(
    title=go.layout.Title(
        text=text,
        xref="paper",
        x=0))

#show chart
st.plotly_chart(fig, use_container_width=True)