File size: 19,768 Bytes
5fa5566 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import argparse
import os
import subprocess
import time
from inspect import currentframe, getframeinfo
from pathlib import Path
import ffmpeg_utils
import file_utils
import translate_utils
from utils import time_task, audio_extensions, video_extensions, check_other_extensions
version = "v0.16"
# Terminal colors
default = "\033[1;0m"
gray = "\033[1;37m"
wblue = "\033[1;36m"
blue = "\033[1;34m"
yellow = "\033[1;33m"
green = "\033[1;32m"
red = "\033[1;31m"
print(f"""
{blue}888 {gray} .d8888b.
{blue}888 {gray}d88P Y88b
{blue}888 {gray}888 888
{blue}888 .d88b. {gray}888 .d88b. 88888b.
{blue}888 d8P Y8b {gray}888 88888 d8P Y8b 888 "88b
{blue}888 88888888 {gray}888 888 88888888 888 888
{blue}888 Y8b. {gray}Y88b d88P Y8b. 888 888
{blue}88888888 "Y8888 {gray} "Y8888P88 "Y8888 888 888
legen {version} - github.com/matheusbach/legen{default}
python {__import__('sys').version}
""")
time.sleep(1.5)
# Define parameters and configurations
parser = argparse.ArgumentParser(prog="LeGen", description="Uses AI to locally transcribes speech from media files, generating subtitle files, translates the generated subtitles, inserts them into the mp4 container, and burns them directly into video",
argument_default=True, allow_abbrev=True, add_help=True, usage='LeGen -i INPUT_PATH [other options]')
parser.add_argument("-i", "--input_path",
help="Path to media files. Can be a folder containing files or an individual file", required=True, type=Path)
parser.add_argument("--norm", default=False, action="store_true",
help="Normalize folder times and run vidqa on input_path before starting processing files")
parser.add_argument("-ts:e", "--transcription_engine", type=str, default="whisperx",
help="Transcription engine. Possible values: whisperx (default), whisper")
parser.add_argument("-ts:m", "--transcription_model", type=str, default="medium",
help="Path or name of the Whisper transcription model. A larger model will consume more resources and be slower, but with better transcription quality. Possible values: tiny, base, small, medium (default), large, ...")
parser.add_argument("-ts:d", "--transcription_device", type=str, default="auto",
help="Device to run the transcription through Whisper. Possible values: auto (default), cpu, cuda")
parser.add_argument("-ts:c", "--transcription_compute_type", type=str, default="auto",
help="Quantization for the neural network. Possible values: auto (default), int8, int8_float32, int8_float16, int8_bfloat16, int16, float16, bfloat16, float32")
parser.add_argument("-ts:b", "--transcription_batch", type=int, default=4,
help="Number of simultaneous segments being transcribed. Higher values will speed up processing. If you have low RAM/VRAM, long duration media files or have buggy subtitles, reduce this value to avoid issues. Only works using transcription_engine whisperx. (default: 4)")
parser.add_argument("--translate", type=str, default="none",
help="Translate subtitles to language code if not the same as origin. (default: don't translate)")
parser.add_argument("--input_lang", type=str, default="auto",
help="Indicates (forces) the language of the voice in the input media (default: auto)")
parser.add_argument("-c:v", "--codec_video", type=str, default="h264", metavar="VIDEO_CODEC",
help="Target video codec. Can be used to set acceleration via GPU or another video API [codec_api], if supported (ffmpeg -encoders). Ex: h264, libx264, h264_vaapi, h264_nvenc, hevc, libx265 hevc_vaapi, hevc_nvenc, hevc_cuvid, hevc_qsv, hevc_amf (default: h264)")
parser.add_argument("-c:a", "--codec_audio", type=str, default="aac", metavar="AUDIO_CODEC",
help="Target audio codec. (default: aac). Ex: aac, libopus, mp3, vorbis")
parser.add_argument("-o:s", "--output_softsubs", default=None, type=Path,
help="Path to the folder or output file for the video files with embedded softsub (embedded in the mp4 container and .srt files). (default: softsubs_ + input_path)")
parser.add_argument("-o:h", "--output_hardsubs", default=None, type=Path,
help="Output folder path for video files with burned-in captions and embedded in the mp4 container. (default: hardsubs_ + input_path)")
parser.add_argument("--overwrite", default=False, action="store_true",
help="Overwrite existing files in output directories")
parser.add_argument("--disable_srt", default=False, action="store_true",
help="Disable .srt file generation and don't insert subtitles in mp4 container of output_softsubs")
parser.add_argument("--disable_softsubs", default=False, action="store_true",
help="Don't insert subtitles in mp4 container of output_softsubs. This option continues generating .srt files")
parser.add_argument("--disable_hardsubs", default=False, action="store_true",
help="Disable subtitle burn in output_hardsubs")
parser.add_argument("--copy_files", default=False, action="store_true",
help="Copy other (non-video) files present in input directory to output directories. Only generate the subtitles and videos")
args = parser.parse_args()
if not args.output_softsubs and not args.input_path.is_file():
args.output_softsubs = compatibility_path if (compatibility_path := Path(args.input_path.parent, "legen_srt_" + args.input_path.name)).exists() else Path(args.input_path.parent, "softsubs_" + args.input_path.name)
if not args.output_hardsubs and not args.input_path.is_file():
args.output_hardsubs = compatibility_path if (compatibility_path := Path(args.input_path.parent, "legen_burned_" + args.input_path.name)).exists() else Path(args.input_path.parent, "hardsubs_" + args.input_path.name)
if args.transcription_device == "auto":
import torch
torch_device = ("cuda" if torch.cuda.is_available() else "cpu")
else:
torch_device = str.lower(args.transcription_device)
transcription_compute_type = args.transcription_compute_type if args.transcription_compute_type != "default" else "float16" if not torch_device == "cpu" else "float32"
args.transcription_model = "large-v3" if args.transcription_model == "large" else args.transcription_model
# ----------------------------------------------------------------------------
if args.norm:
# normalize video using vidqa
with time_task(message_start=f"Running {wblue}vidqa{default} and updating folder modifiation times in {gray}{args.input_path}{default}", end="\n"):
subprocess.run(["vidqa", "-i", args.input_path, "-m", "unique", "-fd",
Path(Path(getframeinfo(currentframe()).filename).resolve().parent, "vidqa_data")])
# update folder time structure
file_utils.update_folder_times(args.input_path)
# load whisper model
with time_task(message_start=f"\nLoading {args.transcription_engine} model: {wblue}{args.transcription_model}{default} ({transcription_compute_type}) on {wblue}{torch_device}{default}", end="\n"):
if args.transcription_engine == 'whisperx':
import whisperx
import whisperx_utils
whisper_model = whisperx.load_model(
whisper_arch=args.transcription_model, device=torch_device, compute_type=transcription_compute_type, asr_options={"repetition_penalty": 1, "prompt_reset_on_temperature": 0.5, "no_repeat_ngram_size": 2,})
elif args.transcription_engine == 'whisper':
import whisper
import whisper_utils
whisper_model = whisper.load_model(
name=args.transcription_model, device=torch_device, in_memory=True)
else:
raise ValueError(f'Unsupported transcription engine {args.transcription_engine}. Supported values: whisperx, whisper')
with time_task(message="⌛ Processing files for"):
path: Path
for path in (item for item in sorted(sorted(Path(args.input_path).rglob('*'), key=lambda x: x.stat().st_mtime), key=lambda x: len(x.parts)) if item.is_file()):
rel_path = path.relative_to(args.input_path)
with time_task(message_start=f"\nProcessing {yellow}{rel_path.as_posix()}{default}", end="\n", message="⌚ Done in"):
try:
# define file type by extensions
if path.suffix.lower() in video_extensions:
file_type = "video"
elif path.suffix.lower() in audio_extensions:
file_type = "audio"
else:
file_type = "other"
if file_type == "video" or file_type == "audio":
# define paths
origin_media_path = path
dupe_filename = len(check_other_extensions(path, list(video_extensions | audio_extensions))) > 1
posfix_extension = path.suffix.lower().replace('.', '_') if dupe_filename else ''
softsub_video_dir = Path(args.output_softsubs, rel_path.parent)
burned_video_dir = Path(args.output_hardsubs, rel_path.parent)
# output video extension will be changed to .mp4
softsub_video_path = Path(args.output_softsubs, rel_path.stem + posfix_extension + ".mp4")
hardsub_video_path = Path(burned_video_dir, rel_path.stem + posfix_extension + ".mp4")
subtitle_translated_path = Path(
softsub_video_dir, rel_path.stem + posfix_extension + f"_{args.translate}.srt")
subtitles_path = []
if args.input_lang == "auto":
# extract audio
audio_short_extracted = file_utils.TempFile(
None, file_ext=".wav")
ffmpeg_utils.extract_short_wav(
origin_media_path, audio_short_extracted.getpath())
# detect language
print("Detecting audio language: ", end='', flush=True)
if args.transcription_engine == 'whisperx':
audio_language = whisperx_utils.detect_language(
whisper_model, audio_short_extracted.getpath())
if args.transcription_engine == 'whisper':
audio_language = whisper_utils.detect_language(
whisper_model, audio_short_extracted.getpath())
print(f"{gray}{audio_language}{default}")
audio_short_extracted.destroy()
else:
audio_language = args.input_lang
print(f"Forced input audio language: {gray}{audio_language}{default}")
# set path after get transcribed language
subtitle_transcribed_path = Path(
softsub_video_dir, rel_path.stem + posfix_extension + f"_{audio_language}.srt")
# create temp file for .srt
transcribed_srt_temp = file_utils.TempFile(
subtitle_transcribed_path, file_ext=".srt")
# skip transcription if transcribed srt for this language is existing (without overwrite neabled) or will not be used in LeGen process
if (file_utils.file_is_valid(subtitle_transcribed_path)) or ((args.disable_hardsubs or file_utils.file_is_valid(hardsub_video_path)) and (args.disable_srt or file_utils.file_is_valid(subtitle_transcribed_path))) and not args.overwrite:
print("Transcription is unnecessary. Skipping.")
else:
# extract audio
audio_extracted = file_utils.TempFile(None, file_ext=".wav")
ffmpeg_utils.extract_audio_wav(
origin_media_path, audio_extracted.getpath())
# transcribe saving subtitles to temp .srt file
if args.transcription_engine == 'whisperx':
print(f"{wblue}Transcribing{default} with {gray}WhisperX{default}")
whisperx_utils.transcribe_audio(
whisper_model, audio_extracted.getpath(), transcribed_srt_temp.getpath(), audio_language, device=torch_device, batch_size=args.transcription_batch)
if args.transcription_engine == 'whisper':
print(f"{wblue}Transcribing{default} with {gray}Whisper{default}")
whisper_utils.transcribe_audio(
model=whisper_model, audio_path=audio_extracted.getpath(), srt_path=transcribed_srt_temp.getpath(), lang=audio_language, disable_fp16=False if transcription_compute_type == "float16" or transcription_compute_type == "fp16" else True)
audio_extracted.destroy()
# if save .srt is enabled, save it to destination dir, also update path with language code
if not args.disable_srt:
transcribed_srt_temp.save()
subtitles_path.append(transcribed_srt_temp.getvalidpath())
# translate transcribed subtitle using Google Translate if transcribed language is not equals to target
# skip translation if translation has not requested, has equal source and output language, if file is existing (without overwrite neabled) or will not be used in LeGen process
if args.translate == "none":
pass # translation not requested
elif args.translate == audio_language:
print("Translation is unnecessary because input and output language are the same. Skipping.")
elif (args.disable_hardsubs or file_utils.file_is_valid(hardsub_video_path)) and (args.disable_srt or (file_utils.file_is_valid(subtitle_translated_path) and file_utils.file_is_valid(subtitle_transcribed_path) and file_utils.file_is_valid(subtitle_translated_path))) and not args.overwrite:
print("Translation is unnecessary. Skipping.")
subtitles_path.insert(0, subtitle_translated_path)
elif file_utils.file_is_valid(subtitle_translated_path):
print("Translated file found. Skipping translation.")
subtitles_path.insert(0, subtitle_translated_path)
elif transcribed_srt_temp.getvalidpath():
# create the temp .srt translated file
translated_srt_temp = file_utils.TempFile(
subtitle_translated_path, file_ext=".srt")
# translating with google translate public API
print(f"{wblue}Translating{default} with {gray}Google Translate{default}")
subs = translate_utils.translate_srt_file(
transcribed_srt_temp.getvalidpath(), translated_srt_temp.getpath(), args.translate)
if not args.disable_srt:
translated_srt_temp.save()
subtitles_path.insert(0, translated_srt_temp.getvalidpath())
if not args.disable_softsubs:
if file_utils.file_is_valid(softsub_video_path) and not args.overwrite:
print(f"Existing video file {gray}{softsub_video_path}{default}. Skipping subtitle insert")
else:
# create the temp .mp4 with srt in video container
video_softsubs_temp = file_utils.TempFile(
softsub_video_path, file_ext=".mp4")
# insert subtitle into container using ffmpeg
print(f"{wblue}Inserting subtitle{default} in mp4 container using {gray}FFmpeg{default}")
ffmpeg_utils.insert_subtitle(input_media_path=origin_media_path, subtitles_path=subtitles_path,
burn_subtitles=False, output_video_path=video_softsubs_temp.getpath(),
codec_video=args.codec_video, codec_audio=args.codec_audio)
video_softsubs_temp.save()
if not args.disable_hardsubs:
if file_utils.file_is_valid(hardsub_video_path) and not args.overwrite:
print(f"Existing video file {gray}{hardsub_video_path}{default}. Skipping subtitle burn")
else:
# create the temp .mp4 with srt in video container
video_hardsubs_temp = file_utils.TempFile(
hardsub_video_path, file_ext=".mp4")
# insert subtitle into container and burn using ffmpeg
print(f"{wblue}Inserting subtitle{default} in mp4 container and {wblue}burning{default} using {gray}FFmpeg{default}")
ffmpeg_utils.insert_subtitle(input_media_path=origin_media_path, subtitles_path=subtitles_path,
burn_subtitles=True, output_video_path=video_hardsubs_temp.getpath(),
codec_video=args.codec_video, codec_audio=args.codec_audio)
video_hardsubs_temp.save()
else:
print("not a video file")
if args.copy_files:
if not args.disable_srt:
# copia o arquivo extra para pasta que contém também os arquivos srt
file_utils.copy_file_if_different(path, Path(
args.output_softsubs, rel_path))
if not args.disable_hardsubs:
# copia o arquivo extra para pasta que contém os videos queimados
file_utils.copy_file_if_different(path, Path(
args.output_hardsubs, rel_path))
except Exception as e:
file = path.as_posix()
print(f"{red}ERROR !!!{default} {file}")
print(f"{yellow}check legen-errors.txt for details{default}")
# extract the relevant information from the exception object
current_time = time.strftime("%y/%m/%d %H:%M:%S", time.localtime())
error_message = f"[{current_time}] {file}: {type(e).__name__}: {str(e)}"
# write the error message to a file
with open(Path(Path(getframeinfo(currentframe()).filename).resolve().parent, "legen-errors.txt"), "a") as f:
f.write(error_message + "\n")
f.close()
print("Deleting temp folder")
file_utils.delete_folder(
Path(Path(getframeinfo(currentframe()).filename).resolve().parent, "temp"))
print(f"{green}Tasks done!{default}")
|