Spaces:
Runtime error
Runtime error
RamAnanth1
commited on
Commit
•
f50cc97
1
Parent(s):
c5a40b1
Upload 6 files
Browse files- annotator/openpose/__init__.py +29 -0
- annotator/openpose/body.py +219 -0
- annotator/openpose/hand.py +86 -0
- annotator/openpose/model.py +219 -0
- annotator/openpose/util.py +164 -0
- annotator/util.py +34 -0
annotator/openpose/__init__.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from . import util
|
7 |
+
from .body import Body
|
8 |
+
from .hand import Hand
|
9 |
+
|
10 |
+
body_estimation = Body('./annotator/ckpts/body_pose_model.pth')
|
11 |
+
hand_estimation = Hand('./annotator/ckpts/hand_pose_model.pth')
|
12 |
+
|
13 |
+
|
14 |
+
def apply_openpose(oriImg, hand=False):
|
15 |
+
oriImg = oriImg[:, :, ::-1].copy()
|
16 |
+
with torch.no_grad():
|
17 |
+
candidate, subset = body_estimation(oriImg)
|
18 |
+
canvas = np.zeros_like(oriImg)
|
19 |
+
canvas = util.draw_bodypose(canvas, candidate, subset)
|
20 |
+
if hand:
|
21 |
+
hands_list = util.handDetect(candidate, subset, oriImg)
|
22 |
+
all_hand_peaks = []
|
23 |
+
for x, y, w, is_left in hands_list:
|
24 |
+
peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
|
25 |
+
peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x)
|
26 |
+
peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y)
|
27 |
+
all_hand_peaks.append(peaks)
|
28 |
+
canvas = util.draw_handpose(canvas, all_hand_peaks)
|
29 |
+
return canvas, dict(candidate=candidate.tolist(), subset=subset.tolist())
|
annotator/openpose/body.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import math
|
4 |
+
import time
|
5 |
+
from scipy.ndimage.filters import gaussian_filter
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import matplotlib
|
8 |
+
import torch
|
9 |
+
from torchvision import transforms
|
10 |
+
|
11 |
+
from . import util
|
12 |
+
from .model import bodypose_model
|
13 |
+
|
14 |
+
class Body(object):
|
15 |
+
def __init__(self, model_path):
|
16 |
+
self.model = bodypose_model()
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
self.model = self.model.cuda()
|
19 |
+
print('cuda')
|
20 |
+
model_dict = util.transfer(self.model, torch.load(model_path))
|
21 |
+
self.model.load_state_dict(model_dict)
|
22 |
+
self.model.eval()
|
23 |
+
|
24 |
+
def __call__(self, oriImg):
|
25 |
+
# scale_search = [0.5, 1.0, 1.5, 2.0]
|
26 |
+
scale_search = [0.5]
|
27 |
+
boxsize = 368
|
28 |
+
stride = 8
|
29 |
+
padValue = 128
|
30 |
+
thre1 = 0.1
|
31 |
+
thre2 = 0.05
|
32 |
+
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
|
33 |
+
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
|
34 |
+
paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
|
35 |
+
|
36 |
+
for m in range(len(multiplier)):
|
37 |
+
scale = multiplier[m]
|
38 |
+
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
39 |
+
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
|
40 |
+
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
|
41 |
+
im = np.ascontiguousarray(im)
|
42 |
+
|
43 |
+
data = torch.from_numpy(im).float()
|
44 |
+
if torch.cuda.is_available():
|
45 |
+
data = data.cuda()
|
46 |
+
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
|
47 |
+
with torch.no_grad():
|
48 |
+
Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
|
49 |
+
Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
|
50 |
+
Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
|
51 |
+
|
52 |
+
# extract outputs, resize, and remove padding
|
53 |
+
# heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
|
54 |
+
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
|
55 |
+
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
56 |
+
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
57 |
+
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
58 |
+
|
59 |
+
# paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
|
60 |
+
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
|
61 |
+
paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
62 |
+
paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
63 |
+
paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
64 |
+
|
65 |
+
heatmap_avg += heatmap_avg + heatmap / len(multiplier)
|
66 |
+
paf_avg += + paf / len(multiplier)
|
67 |
+
|
68 |
+
all_peaks = []
|
69 |
+
peak_counter = 0
|
70 |
+
|
71 |
+
for part in range(18):
|
72 |
+
map_ori = heatmap_avg[:, :, part]
|
73 |
+
one_heatmap = gaussian_filter(map_ori, sigma=3)
|
74 |
+
|
75 |
+
map_left = np.zeros(one_heatmap.shape)
|
76 |
+
map_left[1:, :] = one_heatmap[:-1, :]
|
77 |
+
map_right = np.zeros(one_heatmap.shape)
|
78 |
+
map_right[:-1, :] = one_heatmap[1:, :]
|
79 |
+
map_up = np.zeros(one_heatmap.shape)
|
80 |
+
map_up[:, 1:] = one_heatmap[:, :-1]
|
81 |
+
map_down = np.zeros(one_heatmap.shape)
|
82 |
+
map_down[:, :-1] = one_heatmap[:, 1:]
|
83 |
+
|
84 |
+
peaks_binary = np.logical_and.reduce(
|
85 |
+
(one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
|
86 |
+
peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
|
87 |
+
peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
|
88 |
+
peak_id = range(peak_counter, peak_counter + len(peaks))
|
89 |
+
peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
|
90 |
+
|
91 |
+
all_peaks.append(peaks_with_score_and_id)
|
92 |
+
peak_counter += len(peaks)
|
93 |
+
|
94 |
+
# find connection in the specified sequence, center 29 is in the position 15
|
95 |
+
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
96 |
+
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
97 |
+
[1, 16], [16, 18], [3, 17], [6, 18]]
|
98 |
+
# the middle joints heatmap correpondence
|
99 |
+
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
|
100 |
+
[23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
|
101 |
+
[55, 56], [37, 38], [45, 46]]
|
102 |
+
|
103 |
+
connection_all = []
|
104 |
+
special_k = []
|
105 |
+
mid_num = 10
|
106 |
+
|
107 |
+
for k in range(len(mapIdx)):
|
108 |
+
score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
|
109 |
+
candA = all_peaks[limbSeq[k][0] - 1]
|
110 |
+
candB = all_peaks[limbSeq[k][1] - 1]
|
111 |
+
nA = len(candA)
|
112 |
+
nB = len(candB)
|
113 |
+
indexA, indexB = limbSeq[k]
|
114 |
+
if (nA != 0 and nB != 0):
|
115 |
+
connection_candidate = []
|
116 |
+
for i in range(nA):
|
117 |
+
for j in range(nB):
|
118 |
+
vec = np.subtract(candB[j][:2], candA[i][:2])
|
119 |
+
norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
|
120 |
+
norm = max(0.001, norm)
|
121 |
+
vec = np.divide(vec, norm)
|
122 |
+
|
123 |
+
startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
|
124 |
+
np.linspace(candA[i][1], candB[j][1], num=mid_num)))
|
125 |
+
|
126 |
+
vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
|
127 |
+
for I in range(len(startend))])
|
128 |
+
vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
|
129 |
+
for I in range(len(startend))])
|
130 |
+
|
131 |
+
score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
|
132 |
+
score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
|
133 |
+
0.5 * oriImg.shape[0] / norm - 1, 0)
|
134 |
+
criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
|
135 |
+
criterion2 = score_with_dist_prior > 0
|
136 |
+
if criterion1 and criterion2:
|
137 |
+
connection_candidate.append(
|
138 |
+
[i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
|
139 |
+
|
140 |
+
connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
|
141 |
+
connection = np.zeros((0, 5))
|
142 |
+
for c in range(len(connection_candidate)):
|
143 |
+
i, j, s = connection_candidate[c][0:3]
|
144 |
+
if (i not in connection[:, 3] and j not in connection[:, 4]):
|
145 |
+
connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
|
146 |
+
if (len(connection) >= min(nA, nB)):
|
147 |
+
break
|
148 |
+
|
149 |
+
connection_all.append(connection)
|
150 |
+
else:
|
151 |
+
special_k.append(k)
|
152 |
+
connection_all.append([])
|
153 |
+
|
154 |
+
# last number in each row is the total parts number of that person
|
155 |
+
# the second last number in each row is the score of the overall configuration
|
156 |
+
subset = -1 * np.ones((0, 20))
|
157 |
+
candidate = np.array([item for sublist in all_peaks for item in sublist])
|
158 |
+
|
159 |
+
for k in range(len(mapIdx)):
|
160 |
+
if k not in special_k:
|
161 |
+
partAs = connection_all[k][:, 0]
|
162 |
+
partBs = connection_all[k][:, 1]
|
163 |
+
indexA, indexB = np.array(limbSeq[k]) - 1
|
164 |
+
|
165 |
+
for i in range(len(connection_all[k])): # = 1:size(temp,1)
|
166 |
+
found = 0
|
167 |
+
subset_idx = [-1, -1]
|
168 |
+
for j in range(len(subset)): # 1:size(subset,1):
|
169 |
+
if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
|
170 |
+
subset_idx[found] = j
|
171 |
+
found += 1
|
172 |
+
|
173 |
+
if found == 1:
|
174 |
+
j = subset_idx[0]
|
175 |
+
if subset[j][indexB] != partBs[i]:
|
176 |
+
subset[j][indexB] = partBs[i]
|
177 |
+
subset[j][-1] += 1
|
178 |
+
subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
179 |
+
elif found == 2: # if found 2 and disjoint, merge them
|
180 |
+
j1, j2 = subset_idx
|
181 |
+
membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
|
182 |
+
if len(np.nonzero(membership == 2)[0]) == 0: # merge
|
183 |
+
subset[j1][:-2] += (subset[j2][:-2] + 1)
|
184 |
+
subset[j1][-2:] += subset[j2][-2:]
|
185 |
+
subset[j1][-2] += connection_all[k][i][2]
|
186 |
+
subset = np.delete(subset, j2, 0)
|
187 |
+
else: # as like found == 1
|
188 |
+
subset[j1][indexB] = partBs[i]
|
189 |
+
subset[j1][-1] += 1
|
190 |
+
subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
|
191 |
+
|
192 |
+
# if find no partA in the subset, create a new subset
|
193 |
+
elif not found and k < 17:
|
194 |
+
row = -1 * np.ones(20)
|
195 |
+
row[indexA] = partAs[i]
|
196 |
+
row[indexB] = partBs[i]
|
197 |
+
row[-1] = 2
|
198 |
+
row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
|
199 |
+
subset = np.vstack([subset, row])
|
200 |
+
# delete some rows of subset which has few parts occur
|
201 |
+
deleteIdx = []
|
202 |
+
for i in range(len(subset)):
|
203 |
+
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
|
204 |
+
deleteIdx.append(i)
|
205 |
+
subset = np.delete(subset, deleteIdx, axis=0)
|
206 |
+
|
207 |
+
# subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
|
208 |
+
# candidate: x, y, score, id
|
209 |
+
return candidate, subset
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
body_estimation = Body('../model/body_pose_model.pth')
|
213 |
+
|
214 |
+
test_image = '../images/ski.jpg'
|
215 |
+
oriImg = cv2.imread(test_image) # B,G,R order
|
216 |
+
candidate, subset = body_estimation(oriImg)
|
217 |
+
canvas = util.draw_bodypose(oriImg, candidate, subset)
|
218 |
+
plt.imshow(canvas[:, :, [2, 1, 0]])
|
219 |
+
plt.show()
|
annotator/openpose/hand.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import math
|
5 |
+
import time
|
6 |
+
from scipy.ndimage.filters import gaussian_filter
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import matplotlib
|
9 |
+
import torch
|
10 |
+
from skimage.measure import label
|
11 |
+
|
12 |
+
from .model import handpose_model
|
13 |
+
from . import util
|
14 |
+
|
15 |
+
class Hand(object):
|
16 |
+
def __init__(self, model_path):
|
17 |
+
self.model = handpose_model()
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
self.model = self.model.cuda()
|
20 |
+
print('cuda')
|
21 |
+
model_dict = util.transfer(self.model, torch.load(model_path))
|
22 |
+
self.model.load_state_dict(model_dict)
|
23 |
+
self.model.eval()
|
24 |
+
|
25 |
+
def __call__(self, oriImg):
|
26 |
+
scale_search = [0.5, 1.0, 1.5, 2.0]
|
27 |
+
# scale_search = [0.5]
|
28 |
+
boxsize = 368
|
29 |
+
stride = 8
|
30 |
+
padValue = 128
|
31 |
+
thre = 0.05
|
32 |
+
multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
|
33 |
+
heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22))
|
34 |
+
# paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
|
35 |
+
|
36 |
+
for m in range(len(multiplier)):
|
37 |
+
scale = multiplier[m]
|
38 |
+
imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
|
39 |
+
imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
|
40 |
+
im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
|
41 |
+
im = np.ascontiguousarray(im)
|
42 |
+
|
43 |
+
data = torch.from_numpy(im).float()
|
44 |
+
if torch.cuda.is_available():
|
45 |
+
data = data.cuda()
|
46 |
+
# data = data.permute([2, 0, 1]).unsqueeze(0).float()
|
47 |
+
with torch.no_grad():
|
48 |
+
output = self.model(data).cpu().numpy()
|
49 |
+
# output = self.model(data).numpy()q
|
50 |
+
|
51 |
+
# extract outputs, resize, and remove padding
|
52 |
+
heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps
|
53 |
+
heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
|
54 |
+
heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
|
55 |
+
heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
|
56 |
+
|
57 |
+
heatmap_avg += heatmap / len(multiplier)
|
58 |
+
|
59 |
+
all_peaks = []
|
60 |
+
for part in range(21):
|
61 |
+
map_ori = heatmap_avg[:, :, part]
|
62 |
+
one_heatmap = gaussian_filter(map_ori, sigma=3)
|
63 |
+
binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
|
64 |
+
# 全部小于阈值
|
65 |
+
if np.sum(binary) == 0:
|
66 |
+
all_peaks.append([0, 0])
|
67 |
+
continue
|
68 |
+
label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim)
|
69 |
+
max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1
|
70 |
+
label_img[label_img != max_index] = 0
|
71 |
+
map_ori[label_img == 0] = 0
|
72 |
+
|
73 |
+
y, x = util.npmax(map_ori)
|
74 |
+
all_peaks.append([x, y])
|
75 |
+
return np.array(all_peaks)
|
76 |
+
|
77 |
+
if __name__ == "__main__":
|
78 |
+
hand_estimation = Hand('../model/hand_pose_model.pth')
|
79 |
+
|
80 |
+
# test_image = '../images/hand.jpg'
|
81 |
+
test_image = '../images/hand.jpg'
|
82 |
+
oriImg = cv2.imread(test_image) # B,G,R order
|
83 |
+
peaks = hand_estimation(oriImg)
|
84 |
+
canvas = util.draw_handpose(oriImg, peaks, True)
|
85 |
+
cv2.imshow('', canvas)
|
86 |
+
cv2.waitKey(0)
|
annotator/openpose/model.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from collections import OrderedDict
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
def make_layers(block, no_relu_layers):
|
8 |
+
layers = []
|
9 |
+
for layer_name, v in block.items():
|
10 |
+
if 'pool' in layer_name:
|
11 |
+
layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1],
|
12 |
+
padding=v[2])
|
13 |
+
layers.append((layer_name, layer))
|
14 |
+
else:
|
15 |
+
conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1],
|
16 |
+
kernel_size=v[2], stride=v[3],
|
17 |
+
padding=v[4])
|
18 |
+
layers.append((layer_name, conv2d))
|
19 |
+
if layer_name not in no_relu_layers:
|
20 |
+
layers.append(('relu_'+layer_name, nn.ReLU(inplace=True)))
|
21 |
+
|
22 |
+
return nn.Sequential(OrderedDict(layers))
|
23 |
+
|
24 |
+
class bodypose_model(nn.Module):
|
25 |
+
def __init__(self):
|
26 |
+
super(bodypose_model, self).__init__()
|
27 |
+
|
28 |
+
# these layers have no relu layer
|
29 |
+
no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\
|
30 |
+
'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\
|
31 |
+
'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\
|
32 |
+
'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1']
|
33 |
+
blocks = {}
|
34 |
+
block0 = OrderedDict([
|
35 |
+
('conv1_1', [3, 64, 3, 1, 1]),
|
36 |
+
('conv1_2', [64, 64, 3, 1, 1]),
|
37 |
+
('pool1_stage1', [2, 2, 0]),
|
38 |
+
('conv2_1', [64, 128, 3, 1, 1]),
|
39 |
+
('conv2_2', [128, 128, 3, 1, 1]),
|
40 |
+
('pool2_stage1', [2, 2, 0]),
|
41 |
+
('conv3_1', [128, 256, 3, 1, 1]),
|
42 |
+
('conv3_2', [256, 256, 3, 1, 1]),
|
43 |
+
('conv3_3', [256, 256, 3, 1, 1]),
|
44 |
+
('conv3_4', [256, 256, 3, 1, 1]),
|
45 |
+
('pool3_stage1', [2, 2, 0]),
|
46 |
+
('conv4_1', [256, 512, 3, 1, 1]),
|
47 |
+
('conv4_2', [512, 512, 3, 1, 1]),
|
48 |
+
('conv4_3_CPM', [512, 256, 3, 1, 1]),
|
49 |
+
('conv4_4_CPM', [256, 128, 3, 1, 1])
|
50 |
+
])
|
51 |
+
|
52 |
+
|
53 |
+
# Stage 1
|
54 |
+
block1_1 = OrderedDict([
|
55 |
+
('conv5_1_CPM_L1', [128, 128, 3, 1, 1]),
|
56 |
+
('conv5_2_CPM_L1', [128, 128, 3, 1, 1]),
|
57 |
+
('conv5_3_CPM_L1', [128, 128, 3, 1, 1]),
|
58 |
+
('conv5_4_CPM_L1', [128, 512, 1, 1, 0]),
|
59 |
+
('conv5_5_CPM_L1', [512, 38, 1, 1, 0])
|
60 |
+
])
|
61 |
+
|
62 |
+
block1_2 = OrderedDict([
|
63 |
+
('conv5_1_CPM_L2', [128, 128, 3, 1, 1]),
|
64 |
+
('conv5_2_CPM_L2', [128, 128, 3, 1, 1]),
|
65 |
+
('conv5_3_CPM_L2', [128, 128, 3, 1, 1]),
|
66 |
+
('conv5_4_CPM_L2', [128, 512, 1, 1, 0]),
|
67 |
+
('conv5_5_CPM_L2', [512, 19, 1, 1, 0])
|
68 |
+
])
|
69 |
+
blocks['block1_1'] = block1_1
|
70 |
+
blocks['block1_2'] = block1_2
|
71 |
+
|
72 |
+
self.model0 = make_layers(block0, no_relu_layers)
|
73 |
+
|
74 |
+
# Stages 2 - 6
|
75 |
+
for i in range(2, 7):
|
76 |
+
blocks['block%d_1' % i] = OrderedDict([
|
77 |
+
('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]),
|
78 |
+
('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
79 |
+
('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
80 |
+
('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
81 |
+
('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]),
|
82 |
+
('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]),
|
83 |
+
('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0])
|
84 |
+
])
|
85 |
+
|
86 |
+
blocks['block%d_2' % i] = OrderedDict([
|
87 |
+
('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]),
|
88 |
+
('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
89 |
+
('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
90 |
+
('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
91 |
+
('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]),
|
92 |
+
('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]),
|
93 |
+
('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0])
|
94 |
+
])
|
95 |
+
|
96 |
+
for k in blocks.keys():
|
97 |
+
blocks[k] = make_layers(blocks[k], no_relu_layers)
|
98 |
+
|
99 |
+
self.model1_1 = blocks['block1_1']
|
100 |
+
self.model2_1 = blocks['block2_1']
|
101 |
+
self.model3_1 = blocks['block3_1']
|
102 |
+
self.model4_1 = blocks['block4_1']
|
103 |
+
self.model5_1 = blocks['block5_1']
|
104 |
+
self.model6_1 = blocks['block6_1']
|
105 |
+
|
106 |
+
self.model1_2 = blocks['block1_2']
|
107 |
+
self.model2_2 = blocks['block2_2']
|
108 |
+
self.model3_2 = blocks['block3_2']
|
109 |
+
self.model4_2 = blocks['block4_2']
|
110 |
+
self.model5_2 = blocks['block5_2']
|
111 |
+
self.model6_2 = blocks['block6_2']
|
112 |
+
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
|
116 |
+
out1 = self.model0(x)
|
117 |
+
|
118 |
+
out1_1 = self.model1_1(out1)
|
119 |
+
out1_2 = self.model1_2(out1)
|
120 |
+
out2 = torch.cat([out1_1, out1_2, out1], 1)
|
121 |
+
|
122 |
+
out2_1 = self.model2_1(out2)
|
123 |
+
out2_2 = self.model2_2(out2)
|
124 |
+
out3 = torch.cat([out2_1, out2_2, out1], 1)
|
125 |
+
|
126 |
+
out3_1 = self.model3_1(out3)
|
127 |
+
out3_2 = self.model3_2(out3)
|
128 |
+
out4 = torch.cat([out3_1, out3_2, out1], 1)
|
129 |
+
|
130 |
+
out4_1 = self.model4_1(out4)
|
131 |
+
out4_2 = self.model4_2(out4)
|
132 |
+
out5 = torch.cat([out4_1, out4_2, out1], 1)
|
133 |
+
|
134 |
+
out5_1 = self.model5_1(out5)
|
135 |
+
out5_2 = self.model5_2(out5)
|
136 |
+
out6 = torch.cat([out5_1, out5_2, out1], 1)
|
137 |
+
|
138 |
+
out6_1 = self.model6_1(out6)
|
139 |
+
out6_2 = self.model6_2(out6)
|
140 |
+
|
141 |
+
return out6_1, out6_2
|
142 |
+
|
143 |
+
class handpose_model(nn.Module):
|
144 |
+
def __init__(self):
|
145 |
+
super(handpose_model, self).__init__()
|
146 |
+
|
147 |
+
# these layers have no relu layer
|
148 |
+
no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\
|
149 |
+
'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6']
|
150 |
+
# stage 1
|
151 |
+
block1_0 = OrderedDict([
|
152 |
+
('conv1_1', [3, 64, 3, 1, 1]),
|
153 |
+
('conv1_2', [64, 64, 3, 1, 1]),
|
154 |
+
('pool1_stage1', [2, 2, 0]),
|
155 |
+
('conv2_1', [64, 128, 3, 1, 1]),
|
156 |
+
('conv2_2', [128, 128, 3, 1, 1]),
|
157 |
+
('pool2_stage1', [2, 2, 0]),
|
158 |
+
('conv3_1', [128, 256, 3, 1, 1]),
|
159 |
+
('conv3_2', [256, 256, 3, 1, 1]),
|
160 |
+
('conv3_3', [256, 256, 3, 1, 1]),
|
161 |
+
('conv3_4', [256, 256, 3, 1, 1]),
|
162 |
+
('pool3_stage1', [2, 2, 0]),
|
163 |
+
('conv4_1', [256, 512, 3, 1, 1]),
|
164 |
+
('conv4_2', [512, 512, 3, 1, 1]),
|
165 |
+
('conv4_3', [512, 512, 3, 1, 1]),
|
166 |
+
('conv4_4', [512, 512, 3, 1, 1]),
|
167 |
+
('conv5_1', [512, 512, 3, 1, 1]),
|
168 |
+
('conv5_2', [512, 512, 3, 1, 1]),
|
169 |
+
('conv5_3_CPM', [512, 128, 3, 1, 1])
|
170 |
+
])
|
171 |
+
|
172 |
+
block1_1 = OrderedDict([
|
173 |
+
('conv6_1_CPM', [128, 512, 1, 1, 0]),
|
174 |
+
('conv6_2_CPM', [512, 22, 1, 1, 0])
|
175 |
+
])
|
176 |
+
|
177 |
+
blocks = {}
|
178 |
+
blocks['block1_0'] = block1_0
|
179 |
+
blocks['block1_1'] = block1_1
|
180 |
+
|
181 |
+
# stage 2-6
|
182 |
+
for i in range(2, 7):
|
183 |
+
blocks['block%d' % i] = OrderedDict([
|
184 |
+
('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]),
|
185 |
+
('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]),
|
186 |
+
('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]),
|
187 |
+
('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]),
|
188 |
+
('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]),
|
189 |
+
('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]),
|
190 |
+
('Mconv7_stage%d' % i, [128, 22, 1, 1, 0])
|
191 |
+
])
|
192 |
+
|
193 |
+
for k in blocks.keys():
|
194 |
+
blocks[k] = make_layers(blocks[k], no_relu_layers)
|
195 |
+
|
196 |
+
self.model1_0 = blocks['block1_0']
|
197 |
+
self.model1_1 = blocks['block1_1']
|
198 |
+
self.model2 = blocks['block2']
|
199 |
+
self.model3 = blocks['block3']
|
200 |
+
self.model4 = blocks['block4']
|
201 |
+
self.model5 = blocks['block5']
|
202 |
+
self.model6 = blocks['block6']
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
out1_0 = self.model1_0(x)
|
206 |
+
out1_1 = self.model1_1(out1_0)
|
207 |
+
concat_stage2 = torch.cat([out1_1, out1_0], 1)
|
208 |
+
out_stage2 = self.model2(concat_stage2)
|
209 |
+
concat_stage3 = torch.cat([out_stage2, out1_0], 1)
|
210 |
+
out_stage3 = self.model3(concat_stage3)
|
211 |
+
concat_stage4 = torch.cat([out_stage3, out1_0], 1)
|
212 |
+
out_stage4 = self.model4(concat_stage4)
|
213 |
+
concat_stage5 = torch.cat([out_stage4, out1_0], 1)
|
214 |
+
out_stage5 = self.model5(concat_stage5)
|
215 |
+
concat_stage6 = torch.cat([out_stage5, out1_0], 1)
|
216 |
+
out_stage6 = self.model6(concat_stage6)
|
217 |
+
return out_stage6
|
218 |
+
|
219 |
+
|
annotator/openpose/util.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib
|
4 |
+
import cv2
|
5 |
+
|
6 |
+
|
7 |
+
def padRightDownCorner(img, stride, padValue):
|
8 |
+
h = img.shape[0]
|
9 |
+
w = img.shape[1]
|
10 |
+
|
11 |
+
pad = 4 * [None]
|
12 |
+
pad[0] = 0 # up
|
13 |
+
pad[1] = 0 # left
|
14 |
+
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
|
15 |
+
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
|
16 |
+
|
17 |
+
img_padded = img
|
18 |
+
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
|
19 |
+
img_padded = np.concatenate((pad_up, img_padded), axis=0)
|
20 |
+
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
|
21 |
+
img_padded = np.concatenate((pad_left, img_padded), axis=1)
|
22 |
+
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
|
23 |
+
img_padded = np.concatenate((img_padded, pad_down), axis=0)
|
24 |
+
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
|
25 |
+
img_padded = np.concatenate((img_padded, pad_right), axis=1)
|
26 |
+
|
27 |
+
return img_padded, pad
|
28 |
+
|
29 |
+
# transfer caffe model to pytorch which will match the layer name
|
30 |
+
def transfer(model, model_weights):
|
31 |
+
transfered_model_weights = {}
|
32 |
+
for weights_name in model.state_dict().keys():
|
33 |
+
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
|
34 |
+
return transfered_model_weights
|
35 |
+
|
36 |
+
# draw the body keypoint and lims
|
37 |
+
def draw_bodypose(canvas, candidate, subset):
|
38 |
+
stickwidth = 4
|
39 |
+
limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
|
40 |
+
[10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
|
41 |
+
[1, 16], [16, 18], [3, 17], [6, 18]]
|
42 |
+
|
43 |
+
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
|
44 |
+
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
|
45 |
+
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
46 |
+
for i in range(18):
|
47 |
+
for n in range(len(subset)):
|
48 |
+
index = int(subset[n][i])
|
49 |
+
if index == -1:
|
50 |
+
continue
|
51 |
+
x, y = candidate[index][0:2]
|
52 |
+
cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
|
53 |
+
for i in range(17):
|
54 |
+
for n in range(len(subset)):
|
55 |
+
index = subset[n][np.array(limbSeq[i]) - 1]
|
56 |
+
if -1 in index:
|
57 |
+
continue
|
58 |
+
cur_canvas = canvas.copy()
|
59 |
+
Y = candidate[index.astype(int), 0]
|
60 |
+
X = candidate[index.astype(int), 1]
|
61 |
+
mX = np.mean(X)
|
62 |
+
mY = np.mean(Y)
|
63 |
+
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
|
64 |
+
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
|
65 |
+
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
|
66 |
+
cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
|
67 |
+
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
|
68 |
+
# plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]])
|
69 |
+
# plt.imshow(canvas[:, :, [2, 1, 0]])
|
70 |
+
return canvas
|
71 |
+
|
72 |
+
|
73 |
+
# image drawed by opencv is not good.
|
74 |
+
def draw_handpose(canvas, all_hand_peaks, show_number=False):
|
75 |
+
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
|
76 |
+
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
|
77 |
+
|
78 |
+
for peaks in all_hand_peaks:
|
79 |
+
for ie, e in enumerate(edges):
|
80 |
+
if np.sum(np.all(peaks[e], axis=1)==0)==0:
|
81 |
+
x1, y1 = peaks[e[0]]
|
82 |
+
x2, y2 = peaks[e[1]]
|
83 |
+
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)
|
84 |
+
|
85 |
+
for i, keyponit in enumerate(peaks):
|
86 |
+
x, y = keyponit
|
87 |
+
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
|
88 |
+
if show_number:
|
89 |
+
cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
|
90 |
+
return canvas
|
91 |
+
|
92 |
+
# detect hand according to body pose keypoints
|
93 |
+
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
|
94 |
+
def handDetect(candidate, subset, oriImg):
|
95 |
+
# right hand: wrist 4, elbow 3, shoulder 2
|
96 |
+
# left hand: wrist 7, elbow 6, shoulder 5
|
97 |
+
ratioWristElbow = 0.33
|
98 |
+
detect_result = []
|
99 |
+
image_height, image_width = oriImg.shape[0:2]
|
100 |
+
for person in subset.astype(int):
|
101 |
+
# if any of three not detected
|
102 |
+
has_left = np.sum(person[[5, 6, 7]] == -1) == 0
|
103 |
+
has_right = np.sum(person[[2, 3, 4]] == -1) == 0
|
104 |
+
if not (has_left or has_right):
|
105 |
+
continue
|
106 |
+
hands = []
|
107 |
+
#left hand
|
108 |
+
if has_left:
|
109 |
+
left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
|
110 |
+
x1, y1 = candidate[left_shoulder_index][:2]
|
111 |
+
x2, y2 = candidate[left_elbow_index][:2]
|
112 |
+
x3, y3 = candidate[left_wrist_index][:2]
|
113 |
+
hands.append([x1, y1, x2, y2, x3, y3, True])
|
114 |
+
# right hand
|
115 |
+
if has_right:
|
116 |
+
right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
|
117 |
+
x1, y1 = candidate[right_shoulder_index][:2]
|
118 |
+
x2, y2 = candidate[right_elbow_index][:2]
|
119 |
+
x3, y3 = candidate[right_wrist_index][:2]
|
120 |
+
hands.append([x1, y1, x2, y2, x3, y3, False])
|
121 |
+
|
122 |
+
for x1, y1, x2, y2, x3, y3, is_left in hands:
|
123 |
+
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
|
124 |
+
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
|
125 |
+
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
|
126 |
+
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
|
127 |
+
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
|
128 |
+
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
|
129 |
+
x = x3 + ratioWristElbow * (x3 - x2)
|
130 |
+
y = y3 + ratioWristElbow * (y3 - y2)
|
131 |
+
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
|
132 |
+
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
|
133 |
+
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
|
134 |
+
# x-y refers to the center --> offset to topLeft point
|
135 |
+
# handRectangle.x -= handRectangle.width / 2.f;
|
136 |
+
# handRectangle.y -= handRectangle.height / 2.f;
|
137 |
+
x -= width / 2
|
138 |
+
y -= width / 2 # width = height
|
139 |
+
# overflow the image
|
140 |
+
if x < 0: x = 0
|
141 |
+
if y < 0: y = 0
|
142 |
+
width1 = width
|
143 |
+
width2 = width
|
144 |
+
if x + width > image_width: width1 = image_width - x
|
145 |
+
if y + width > image_height: width2 = image_height - y
|
146 |
+
width = min(width1, width2)
|
147 |
+
# the max hand box value is 20 pixels
|
148 |
+
if width >= 20:
|
149 |
+
detect_result.append([int(x), int(y), int(width), is_left])
|
150 |
+
|
151 |
+
'''
|
152 |
+
return value: [[x, y, w, True if left hand else False]].
|
153 |
+
width=height since the network require squared input.
|
154 |
+
x, y is the coordinate of top left
|
155 |
+
'''
|
156 |
+
return detect_result
|
157 |
+
|
158 |
+
# get max index of 2d array
|
159 |
+
def npmax(array):
|
160 |
+
arrayindex = array.argmax(1)
|
161 |
+
arrayvalue = array.max(1)
|
162 |
+
i = arrayvalue.argmax()
|
163 |
+
j = arrayindex[i]
|
164 |
+
return i, j
|
annotator/util.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
|
4 |
+
|
5 |
+
def HWC3(x):
|
6 |
+
assert x.dtype == np.uint8
|
7 |
+
if x.ndim == 2:
|
8 |
+
x = x[:, :, None]
|
9 |
+
assert x.ndim == 3
|
10 |
+
H, W, C = x.shape
|
11 |
+
assert C == 1 or C == 3 or C == 4
|
12 |
+
if C == 3:
|
13 |
+
return x
|
14 |
+
if C == 1:
|
15 |
+
return np.concatenate([x, x, x], axis=2)
|
16 |
+
if C == 4:
|
17 |
+
color = x[:, :, 0:3].astype(np.float32)
|
18 |
+
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
|
19 |
+
y = color * alpha + 255.0 * (1.0 - alpha)
|
20 |
+
y = y.clip(0, 255).astype(np.uint8)
|
21 |
+
return y
|
22 |
+
|
23 |
+
|
24 |
+
def resize_image(input_image, resolution):
|
25 |
+
H, W, C = input_image.shape
|
26 |
+
H = float(H)
|
27 |
+
W = float(W)
|
28 |
+
k = float(resolution) / min(H, W)
|
29 |
+
H *= k
|
30 |
+
W *= k
|
31 |
+
H = int(np.round(H / 64.0)) * 64
|
32 |
+
W = int(np.round(W / 64.0)) * 64
|
33 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
34 |
+
return img
|