Update app.py
Browse files
app.py
CHANGED
@@ -3,10 +3,30 @@ import torch
|
|
3 |
import torch.nn as nn
|
4 |
import torch.nn.functional as F
|
5 |
from torchvision import transforms
|
6 |
-
from torchvision.transforms import functional as TF
|
7 |
from PIL import Image
|
8 |
-
from sinlib import Tokenizer
|
9 |
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
MAX_LENGTH = 32
|
12 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
@@ -14,75 +34,84 @@ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
14 |
# Load tokenizer
|
15 |
@st.cache_resource
|
16 |
def load_tokenizer():
|
17 |
-
|
18 |
-
|
19 |
return tokenizer
|
20 |
|
21 |
tokenizer = load_tokenizer()
|
|
|
|
|
22 |
|
23 |
class CRNN(nn.Module):
|
24 |
-
def __init__(self,
|
25 |
super(CRNN, self).__init__()
|
26 |
|
27 |
-
self.
|
28 |
-
nn.Conv2d(1, 64, kernel_size=3,
|
29 |
-
nn.ReLU(),
|
30 |
-
nn.MaxPool2d(kernel_size=2, stride=2),
|
31 |
-
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
|
32 |
-
nn.ReLU(),
|
33 |
-
nn.MaxPool2d(kernel_size=2, stride=2),
|
34 |
-
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
|
35 |
-
nn.BatchNorm2d(256),
|
36 |
nn.ReLU(),
|
37 |
-
nn.
|
38 |
-
nn.ReLU(),
|
39 |
-
nn.MaxPool2d(kernel_size=(2, 1)),
|
40 |
-
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
|
41 |
-
nn.BatchNorm2d(512),
|
42 |
-
nn.ReLU(),
|
43 |
-
nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),
|
44 |
-
nn.ReLU(),
|
45 |
-
nn.MaxPool2d(kernel_size=(2, 1)),
|
46 |
-
nn.Conv2d(512, 512, kernel_size=2, stride=1),
|
47 |
-
nn.BatchNorm2d(512),
|
48 |
-
nn.ReLU()
|
49 |
)
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
def forward(self, x):
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
conv =
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
return output
|
63 |
|
|
|
64 |
@st.cache_resource
|
65 |
def load_model(selected_model_path):
|
66 |
-
model = CRNN(
|
67 |
-
model.load_state_dict(torch.load(
|
68 |
model.eval()
|
69 |
return model
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
image = TF.resize(image, (128, 2600), interpolation=Image.BILINEAR)
|
78 |
image = transform(image)
|
|
|
79 |
|
80 |
-
if image.shape[0] != 1:
|
81 |
-
image = image.mean(dim=0, keepdim=True)
|
82 |
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
|
|
86 |
def inference(model, image):
|
87 |
with torch.no_grad():
|
88 |
image = image.to(DEVICE)
|
@@ -91,35 +120,28 @@ def inference(model, image):
|
|
91 |
pred_chars = torch.argmax(log_probs, dim=2)
|
92 |
return pred_chars.squeeze().cpu().numpy()
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
100 |
selected_model_path = st.selectbox(label="Select Model...", options=fp)
|
101 |
model = load_model(selected_model_path)
|
102 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
103 |
|
104 |
if uploaded_file is not None:
|
105 |
-
image = Image.open(uploaded_file)
|
106 |
st.image(image, caption='Uploaded Image', use_column_width=True)
|
107 |
-
w,h = image.size
|
108 |
-
w_color = h_color = 'green'
|
109 |
-
if not 800 <= w <= 2600:
|
110 |
-
w_color = "red"
|
111 |
-
if not 128 <= h <= 600:
|
112 |
-
h_color = "red"
|
113 |
-
with st.expander("Click See Image Details"):
|
114 |
-
st.write(f"Width = :{w_color}[{w}];",f"Height = :{h_color}[{h}]")
|
115 |
|
116 |
if st.button('Predict'):
|
117 |
-
|
118 |
-
predicted_sequence = inference(model, processed_image)
|
119 |
-
|
120 |
-
decoded_text = tokenizer.decode(predicted_sequence, skip_special_tokens=True)
|
121 |
st.write("Predicted Text:")
|
122 |
-
st.write(
|
123 |
|
124 |
st.markdown("---")
|
125 |
st.write("Note: This app uses a pre-trained CRNN model for printed Sinhala text recognition.")
|
|
|
3 |
import torch.nn as nn
|
4 |
import torch.nn.functional as F
|
5 |
from torchvision import transforms
|
|
|
6 |
from PIL import Image
|
|
|
7 |
from pathlib import Path
|
8 |
+
import pickle
|
9 |
+
|
10 |
+
transform = transforms.Compose([
|
11 |
+
transforms.ToTensor()
|
12 |
+
])
|
13 |
+
|
14 |
+
class TextProcessor:
|
15 |
+
def __init__(self, alphabet):
|
16 |
+
self.alphabet = alphabet
|
17 |
+
self.pad_token = "[PAD]"
|
18 |
+
self.stoi = {s: i for i, s in enumerate(self.alphabet,1)}
|
19 |
+
self.stoi[self.pad_token] = 0
|
20 |
+
self.itos = {i: s for s, i in self.stoi.items()}
|
21 |
+
|
22 |
+
def encode(self, label):
|
23 |
+
return [self.stoi[s] for s in label]
|
24 |
+
|
25 |
+
def decode(self, ids):
|
26 |
+
return ''.join([self.itos[i] for i in ids])
|
27 |
+
|
28 |
+
def __len__(self):
|
29 |
+
return len(self.alphabet) + 1
|
30 |
|
31 |
MAX_LENGTH = 32
|
32 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
34 |
# Load tokenizer
|
35 |
@st.cache_resource
|
36 |
def load_tokenizer():
|
37 |
+
with open("text_process.cls",'rb') as f:
|
38 |
+
tokenizer = pickle.load(f)
|
39 |
return tokenizer
|
40 |
|
41 |
tokenizer = load_tokenizer()
|
42 |
+
encode = tokenizer.encode
|
43 |
+
decode = tokenizer.decode
|
44 |
|
45 |
class CRNN(nn.Module):
|
46 |
+
def __init__(self, num_channels, hidden_size, num_classes):
|
47 |
super(CRNN, self).__init__()
|
48 |
|
49 |
+
self.conv1 = nn.Sequential(
|
50 |
+
nn.Conv2d(1, 64, kernel_size=(2,3), padding=1),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
nn.ReLU(),
|
52 |
+
nn.MaxPool2d(2, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
)
|
54 |
|
55 |
+
self.conv2 = nn.Sequential(
|
56 |
+
nn.Conv2d(64, 128, kernel_size=(2,3), padding=1),
|
57 |
+
nn.ReLU(),
|
58 |
+
nn.MaxPool2d(2, 2)
|
59 |
+
)
|
60 |
+
|
61 |
+
self.rnn = nn.LSTM(128 * 16, hidden_size, bidirectional=True, batch_first=True)
|
62 |
+
|
63 |
+
self.fc = nn.Linear(hidden_size * 2, num_classes)
|
64 |
|
65 |
def forward(self, x):
|
66 |
+
# x shape: [batch_size, channels, height, width]
|
67 |
+
|
68 |
+
# CNN feature extraction
|
69 |
+
conv = self.conv1(x)
|
70 |
+
conv = self.conv2(conv)
|
71 |
+
batch, channels, height, width = conv.size()
|
72 |
+
|
73 |
+
conv = conv.permute(0, 3, 1, 2) # [batch, width, channels, height]
|
74 |
+
conv = conv.contiguous().view(batch, width, channels * height)
|
75 |
+
|
76 |
+
rnn, _ = self.rnn(conv)
|
77 |
+
|
78 |
+
output = self.fc(rnn)
|
79 |
+
|
80 |
return output
|
81 |
|
82 |
+
|
83 |
@st.cache_resource
|
84 |
def load_model(selected_model_path):
|
85 |
+
model = CRNN(num_channels=1, hidden_size=256, num_classes=len(tokenizer))
|
86 |
+
model.load_state_dict(torch.load(selected_model_path, map_location=torch.device('cpu')))
|
87 |
model.eval()
|
88 |
return model
|
89 |
|
90 |
+
|
91 |
+
def preprocess_image(img):
|
92 |
+
# img = image.convert("L") # Ensuring image is in grayscale
|
93 |
+
original_width, original_height = img.size
|
94 |
+
new_width = int(61 * original_width / original_height) # Calculate width to preserve aspect ratio
|
95 |
+
image = img.resize((new_width, 61))
|
|
|
96 |
image = transform(image)
|
97 |
+
return image
|
98 |
|
|
|
|
|
99 |
|
100 |
+
def post_process(preds):
|
101 |
+
encodings = []
|
102 |
+
is_previous_zero = False
|
103 |
+
for pred in preds:
|
104 |
+
#only considering >0 tokens
|
105 |
+
if pred==0:
|
106 |
+
zero_found = True
|
107 |
+
pass
|
108 |
+
elif not encodings:
|
109 |
+
encodings.append(pred)
|
110 |
+
elif encodings[-1] != pred:
|
111 |
+
encodings.append(pred)
|
112 |
+
return decode(encodings)
|
113 |
|
114 |
+
|
115 |
def inference(model, image):
|
116 |
with torch.no_grad():
|
117 |
image = image.to(DEVICE)
|
|
|
120 |
pred_chars = torch.argmax(log_probs, dim=2)
|
121 |
return pred_chars.squeeze().cpu().numpy()
|
122 |
|
123 |
+
def predict(image):
|
124 |
+
image = preprocess_image(image)
|
125 |
+
image = image.unsqueeze(0) #remove batch dim
|
126 |
+
predictions = model(image)
|
127 |
+
pred_ids = torch.argmax(predictions, dim=-1).detach().flatten().tolist()
|
128 |
+
text = post_process(pred_ids)
|
129 |
+
return text
|
130 |
+
|
131 |
+
st.title("CRNN Sinhala Printed Text Recognition")
|
132 |
+
fp = Path(".").glob("crnn*.pt")
|
133 |
selected_model_path = st.selectbox(label="Select Model...", options=fp)
|
134 |
model = load_model(selected_model_path)
|
135 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
136 |
|
137 |
if uploaded_file is not None:
|
138 |
+
image = Image.open(uploaded_file).convert("L")
|
139 |
st.image(image, caption='Uploaded Image', use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
if st.button('Predict'):
|
142 |
+
predicted_text = predict(image)
|
|
|
|
|
|
|
143 |
st.write("Predicted Text:")
|
144 |
+
st.write(predicted_text)
|
145 |
|
146 |
st.markdown("---")
|
147 |
st.write("Note: This app uses a pre-trained CRNN model for printed Sinhala text recognition.")
|