Ransaka
Added files
d06496c
raw
history blame
1.61 kB
import hdbscan
import umap
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def load_data():
# Load data
embeddings = np.load(r'data\top_cluster_embeddings.npy')
return embeddings
def get_clusters(embeddings):
# Get clusters
umap_embeddings = umap.UMAP(
n_neighbors=15,
n_components=15,
metric='cosine'
).fit_transform(embeddings)
cluster = hdbscan.HDBSCAN(
min_cluster_size=30,
metric='euclidean',
cluster_selection_method='eom'
).fit(umap_embeddings)
return cluster.labels_
def get_2d_data_for_plotting(embeddings):
# Get 2D data for plotting
umap_embeddings = umap.UMAP(
n_neighbors=15,
n_components=2,
metric='cosine'
).fit_transform(embeddings)
return umap_embeddings
def plot_clusters(embeddings, cluster_labels):
umap_data = get_2d_data_for_plotting(embeddings)
result = pd.DataFrame(umap_data, columns=['x', 'y'])
result['labels'] = cluster_labels
# Visualize clusters
fig, ax = plt.subplots(figsize=(20, 10))
outliers = result.loc[result.labels == -1, :]
clustered = result.loc[result.labels != -1, :]
plt.scatter(outliers.x, outliers.y, color='#BDBDBD', s=0.05)
plt.scatter(clustered.x, clustered.y, c=clustered.labels, s=0.05, cmap='hsv_r')
plt.colorbar()
plt.savefig(r'plots\clusters.png', dpi=300)
def main():
embeddings = load_data()
cluster_labels = get_clusters(embeddings)
plot_clusters(embeddings, cluster_labels)
if __name__ == '__main__':
main()