Ransaka
Added files
d06496c
raw
history blame
3.22 kB
"""
This file contains the code for the embeddings.
Tested models as follows:
- Ransaka/SinhalaRoberta
- keshan/SinhalaBERTo
This file used Ransaka/SinhalaRoberta model for the embeddings.
You can download the model from huggingface.co
- https://huggingface.co/Ransaka/SinhalaRoberta
- https://huggingface.co/keshan/SinhalaBERTo
You can download dataset from kaggle.com
- https://www.kaggle.com/datasets/ransakaravihara/hiru-news-set3
"""
import random
import numpy as np
import pandas as pd
import torch
from sentence_transformers import SentenceTransformer, models,util
model_id = "Ransaka/SinhalaRoberta"
def load_and_process_data(file_path:str)->list:
"""
This function loads the data from the file path and process it.
"""
def processor(text:str)->str:
"""Only addresses the most common issues in the dataset"""
return text\
.replace("\u200d","")\
.replace("Read More..","")\
.replace("ඡායාරූප","")\
.replace("\xa0","")\
.replace("වීඩියෝ","")\
.replace("()","")
def basic_processing(series:pd.Series)->pd.Series:
"""Applies the processor function to a pandas series"""
return series\
.apply(processor)
df = pd.read_csv(file_path)
df.dropna(inplace=True)
df['Headline'] = basic_processing(df['Headline'])
# df['fullText'] = basic_processing(df['fullText'])
#only headlines used for the embeddings
sentences = df['Headline'].values.tolist()
random.shuffle(sentences)
return sentences
def load_model(model_id:str)->SentenceTransformer:
"""
This function loads the model from the huggingface.co
"""
word_embedding_model = models.Transformer(model_id, max_seq_length=514)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
return model
def get_embeddings(model: SentenceTransformer, sentences: list)->list:
"""
This function returns the embeddings for the given sentences.
"""
return model.encode(sentences)
def save_embeddings(embeddings: list, file_path: str):
"""
This function saves the embeddings to the given file path.
"""
np.save(file_path, embeddings)
def load_embeddings(file_path: str)->list:
"""
This function loads the embeddings from the given file path.
"""
return np.load(file_path)
def get_similar(model:SentenceTransformer,embeddings: list, query: str, top_k: int = 5)->list:
"""
This function returns the top k similar sentences for the given query.
"""
query_embedding = model.encode([query])[0]
cos_scores = util.pytorch_cos_sim(query_embedding, embeddings)[0]
top_results = torch.topk(cos_scores, k=top_k)
return top_results
if __name__ == "__main__":
file_path = r"data\top_cluster_dataset.csv"
#load and process data
sentences = load_and_process_data(file_path)
model = load_model(model_id)
#get embeddings
embeddings = get_embeddings(model, sentences)
save_embeddings(embeddings, r"data\embeddings.npy")