# -*- encoding: utf-8 -*- # @Author: SWHL # @Contact: liekkaskono@163.com import numpy as np import streamlit as st from PIL import Image from rapid_layout import RapidLayout, VisLayout layout_engine = RapidLayout() st.markdown( "

Rapid Layout

", unsafe_allow_html=True, ) st.markdown( """

PyPI SemVer2.0

""", unsafe_allow_html=True, ) model_types = { "pp_layout_cdla": [ "text", "title", "figure", "figure_caption", "table", "table_caption", "header", "footer", "reference", "equation", ], "pp_layout_publaynet": ["text", "title", "list", "table", "figure"], "pp_layout_table": ["table"], "yolov8n_layout_paper": [ "text", "title", "figure", "figure_caption", "table", "table_caption", "header", "footer", "reference", "equation", ], "yolov8n_layout_report": [ "text", "title", "header", "footer", "figure", "figure_caption", "table", "table_caption", "toc", ], } option = st.selectbox("选择版面分析模型:", model_types.keys()) st.write("支持检测类型:") st.code(model_types[option], language="python") st.write("请上传图像:") img_suffix = ["png", "jpg", "jpeg"] img_file_buffer = st.file_uploader( "Upload an image", type=img_suffix, key="layout", label_visibility="collapsed" ) if img_file_buffer: image = Image.open(img_file_buffer) img = np.array(image) boxes, scores, class_names, *elapse = layout_engine(img) ploted_img = VisLayout.draw_detections(img, boxes, scores, class_names) st.image(ploted_img, use_column_width=True)