Joker1212's picture
Update app.py
51d474a verified
raw
history blame
11.5 kB
import time
import cv2
import gradio as gr
from lineless_table_rec import LinelessTableRecognition
from rapid_table import RapidTable, RapidTableInput
from rapid_table.main import ModelType
from rapidocr_onnxruntime import RapidOCR
from table_cls import TableCls
from wired_table_rec import WiredTableRecognition
from utils import plot_rec_box, LoadImage, format_html, box_4_2_poly_to_box_4_1
img_loader = LoadImage()
table_rec_path = "models/table_rec/ch_ppstructure_mobile_v2_SLANet.onnx"
det_model_dir = {
"mobile_det": "models/ocr/ch_PP-OCRv4_det_infer.onnx",
}
rec_model_dir = {
"mobile_rec": "models/ocr/ch_PP-OCRv4_rec_infer.onnx",
}
table_engine_list = [
"auto",
"RapidTable(SLANet)",
"RapidTable(SLANet-plus)",
"RapidTable(unitable)",
"wired_table_v2",
"wired_table_v1",
"lineless_table"
]
# 示例图片路径
example_images = [
"images/wired1.jpg",
"images/wired2.png",
"images/wired3.png",
"images/lineless1.jpg",
"images/wired4.jpg",
"images/lineless2.png",
"images/wired5.jpg",
"images/lineless4.jpg",
"images/wired7.jpg",
"images/wired9.jpg",
]
rapid_table_engine = RapidTable(RapidTableInput(model_type=ModelType.PPSTRUCTURE_ZH.value))
SLANet_plus_table_Engine = RapidTable(RapidTableInput(model_type=ModelType.SLANETPLUS.value))
unitable_table_Engine = RapidTable(RapidTableInput(model_type=ModelType.UNITABLE.value))
wired_table_engine_v1 = WiredTableRecognition(version="v1")
wired_table_engine_v2 = WiredTableRecognition(version="v2")
lineless_table_engine = LinelessTableRecognition()
table_cls = TableCls()
ocr_engine_dict = {}
pp_engine_dict = {}
for det_model in det_model_dir.keys():
for rec_model in rec_model_dir.keys():
det_model_path = det_model_dir[det_model]
rec_model_path = rec_model_dir[rec_model]
key = f"{det_model}_{rec_model}"
ocr_engine_dict[key] = RapidOCR(det_model_path=det_model_path, rec_model_path=rec_model_path)
def trans_char_ocr_res(ocr_res):
word_result = []
for res in ocr_res:
score = res[2]
for word_box, word in zip(res[3], res[4]):
word_res = []
word_res.append(word_box)
word_res.append(word)
word_res.append(score)
word_result.append(word_res)
return word_result
def select_ocr_model(det_model, rec_model):
return ocr_engine_dict[f"{det_model}_{rec_model}"]
def select_table_model(img, table_engine_type, det_model, rec_model):
if table_engine_type == "RapidTable(SLANet)":
return rapid_table_engine, table_engine_type
elif table_engine_type == "RapidTable(SLANet-plus)":
return SLANet_plus_table_Engine, table_engine_type
elif table_engine_type == "RapidTable(unitable)":
return unitable_table_Engine, table_engine_type
elif table_engine_type == "wired_table_v1":
return wired_table_engine_v1, table_engine_type
elif table_engine_type == "wired_table_v2":
print("使用v2 wired table")
return wired_table_engine_v2, table_engine_type
elif table_engine_type == "lineless_table":
return lineless_table_engine, table_engine_type
elif table_engine_type == "auto":
cls, elasp = table_cls(img)
if cls == 'wired':
table_engine = wired_table_engine_v2
return table_engine, "wired_table_v2"
return lineless_table_engine, "lineless_table"
def process_image(img_input, small_box_cut_enhance, table_engine_type, char_ocr, rotated_fix, col_threshold, row_threshold):
det_model="mobile_det"
rec_model="mobile_rec"
img = img_loader(img_input)
start = time.time()
table_engine, talbe_type = select_table_model(img, table_engine_type, det_model, rec_model)
ocr_engine = select_ocr_model(det_model, rec_model)
ocr_res, ocr_infer_elapse = ocr_engine(img, return_word_box=char_ocr)
det_cost, cls_cost, rec_cost = ocr_infer_elapse
if char_ocr:
ocr_res = trans_char_ocr_res(ocr_res)
ocr_boxes = [box_4_2_poly_to_box_4_1(ori_ocr[0]) for ori_ocr in ocr_res]
if isinstance(table_engine, RapidTable):
table_results = table_engine(img, ocr_res)
html, polygons, table_rec_elapse = table_results.pred_html, table_results.cell_bboxes,table_results.elapse
polygons = [[polygon[0], polygon[1], polygon[4], polygon[5]] for polygon in polygons]
elif isinstance(table_engine, (WiredTableRecognition, LinelessTableRecognition)):
html, table_rec_elapse, polygons, logic_points, ocr_res = table_engine(img, ocr_result=ocr_res,
enhance_box_line=small_box_cut_enhance,
rotated_fix=rotated_fix,
col_threshold=col_threshold,
row_threshold=row_threshold)
sum_elapse = time.time() - start
all_elapse = f"- table_type: {talbe_type}\n table all cost: {sum_elapse:.5f}\n - table rec cost: {table_rec_elapse:.5f}\n - ocr cost: {det_cost + cls_cost + rec_cost:.5f}"
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
table_boxes_img = plot_rec_box(img.copy(), polygons)
ocr_boxes_img = plot_rec_box(img.copy(), ocr_boxes)
complete_html = format_html(html)
return complete_html, table_boxes_img, ocr_boxes_img, all_elapse
def main():
det_models_labels = list(det_model_dir.keys())
rec_models_labels = list(rec_model_dir.keys())
with gr.Blocks(css="""
.scrollable-container {
overflow-x: auto;
white-space: nowrap;
}
.header-links {
text-align: center;
}
.header-links a {
display: inline-block;
text-align: center;
margin-right: 10px; /* 调整间距 */
}
""") as demo:
gr.HTML(
"<h1 style='text-align: center;'><a href='https://github.com/RapidAI/TableStructureRec?tab=readme-ov-file'>TableStructureRec</a> & <a href='https://github.com/RapidAI/RapidTable'>RapidTable</a></h1>"
)
gr.HTML('''
<div class="header-links">
<a href=""><img src="https://img.shields.io/badge/Python->=3.6,<3.12-aff.svg"></a>
<a href=""><img src="https://img.shields.io/badge/OS-Linux%2C%20Mac%2C%20Win-pink.svg"></a>
<a href="https://pypi.org/project/lineless-table-rec/"><img alt="PyPI" src="https://img.shields.io/pypi/v/lineless-table-rec"></a>
<a href="https://pepy.tech/project/lineless-table-rec"><img src="https://static.pepy.tech/personalized-badge/lineless-table-rec?period=total&units=abbreviation&left_color=grey&right_color=blue&left_text=Downloads%20Lineless"></a>
<a href="https://pepy.tech/project/wired-table-rec"><img src="https://static.pepy.tech/personalized-badge/wired-table-rec?period=total&units=abbreviation&left_color=grey&right_color=blue&left_text=Downloads%20Wired"></a>
<a href="https://pepy.tech/project/rapid-table"><img src="https://static.pepy.tech/personalized-badge/rapid-table?period=total&units=abbreviation&left_color=grey&right_color=blue&left_text=Downloads%20RapidTable"></a>
<a href="https://semver.org/"><img alt="SemVer2.0" src="https://img.shields.io/badge/SemVer-2.0-brightgreen"></a>
<a href="https://github.com/psf/black"><img src="https://img.shields.io/badge/code%20style-black-000000.svg"></a>
<a href="https://github.com/RapidAI/TableStructureRec/blob/c41bbd23898cb27a957ed962b0ffee3c74dfeff1/LICENSE"><img alt="GitHub" src="https://img.shields.io/badge/license-Apache 2.0-blue"></a>
</div>
''')
with gr.Row(): # 两列布局
with gr.Tab("Options"):
with gr.Column(variant="panel", scale=1): # 侧边栏,宽度比例为1
img_input = gr.Image(label="Upload or Select Image", sources="upload", value="images/lineless3.jpg")
# 示例图片选择器
examples = gr.Examples(
examples=example_images,
examples_per_page=len(example_images),
inputs=img_input,
fn=lambda x: x, # 简单返回图片路径
outputs=img_input,
cache_examples=False
)
table_engine_type = gr.Dropdown(table_engine_list, label="Select Recognition Table Engine",
value=table_engine_list[0])
small_box_cut_enhance = gr.Checkbox(
label="Box Cutting Enhancement (Disable to avoid excessive cutting, Enable to reduce missed cutting)",
value=True
)
char_ocr = gr.Checkbox(
label="char rec ocr",
value=False
)
rotate_adapt = gr.Checkbox(
label="Table Rotate Rec Enhancement",
value=False
)
col_threshold = gr.Slider(
label="col threshold(determine same col)",
minimum=5,
maximum=100,
value=15,
step=5
)
row_threshold = gr.Slider(
label="row threshold(determine same row)",
minimum=5,
maximum=100,
value=10,
step=5
)
# det_model = gr.Dropdown(det_models_labels, label="Select OCR Detection Model",
# value=det_models_labels[0])
# rec_model = gr.Dropdown(rec_models_labels, label="Select OCR Recognition Model",
# value=rec_models_labels[0])
run_button = gr.Button("Run")
gr.Markdown("# Elapsed Time")
elapse_text = gr.Text(label="") # 使用 `gr.Text` 组件展示字符串
with gr.Column(scale=2): # 右边列
# 使用 Markdown 标题分隔各个组件
gr.Markdown("# Html Render")
html_output = gr.HTML(label="", elem_classes="scrollable-container")
gr.Markdown("# Table Boxes")
table_boxes_output = gr.Image(label="")
gr.Markdown("# OCR Boxes")
ocr_boxes_output = gr.Image(label="")
run_button.click(
fn=process_image,
inputs=[img_input, small_box_cut_enhance, table_engine_type, char_ocr, rotate_adapt, col_threshold, row_threshold],
outputs=[html_output, table_boxes_output, ocr_boxes_output, elapse_text]
)
demo.launch()
if __name__ == '__main__':
main()