import time import cv2 import gradio as gr from lineless_table_rec import LinelessTableRecognition from rapid_table import RapidTable, RapidTableInput from rapid_table.main import ModelType from rapidocr_onnxruntime import RapidOCR from table_cls import TableCls from wired_table_rec import WiredTableRecognition from utils import plot_rec_box, LoadImage, format_html, box_4_2_poly_to_box_4_1 img_loader = LoadImage() table_rec_path = "models/table_rec/ch_ppstructure_mobile_v2_SLANet.onnx" det_model_dir = { "mobile_det": "models/ocr/ch_PP-OCRv4_det_infer.onnx", } rec_model_dir = { "mobile_rec": "models/ocr/ch_PP-OCRv4_rec_infer.onnx", } table_engine_list = [ "auto", "RapidTable(SLANet)", "RapidTable(SLANet-plus)", "RapidTable(unitable)", "wired_table_v2", "wired_table_v1", "lineless_table" ] # 示例图片路径 example_images = [ "images/wired1.jpg", "images/wired2.png", "images/wired3.png", "images/lineless1.jpg", "images/wired4.jpg", "images/lineless2.png", "images/wired5.jpg", "images/lineless4.jpg", "images/wired7.jpg", "images/wired9.jpg", ] rapid_table_engine = RapidTable(RapidTableInput(model_type=ModelType.PPSTRUCTURE_ZH.value)) SLANet_plus_table_Engine = RapidTable(RapidTableInput(model_type=ModelType.SLANETPLUS.value)) unitable_table_Engine = RapidTable(RapidTableInput(model_type=ModelType.UNITABLE.value)) wired_table_engine_v1 = WiredTableRecognition(version="v1") wired_table_engine_v2 = WiredTableRecognition(version="v2") lineless_table_engine = LinelessTableRecognition() table_cls = TableCls() ocr_engine_dict = {} pp_engine_dict = {} for det_model in det_model_dir.keys(): for rec_model in rec_model_dir.keys(): det_model_path = det_model_dir[det_model] rec_model_path = rec_model_dir[rec_model] key = f"{det_model}_{rec_model}" ocr_engine_dict[key] = RapidOCR(det_model_path=det_model_path, rec_model_path=rec_model_path) def trans_char_ocr_res(ocr_res): word_result = [] for res in ocr_res: score = res[2] for word_box, word in zip(res[3], res[4]): word_res = [] word_res.append(word_box) word_res.append(word) word_res.append(score) word_result.append(word_res) return word_result def select_ocr_model(det_model, rec_model): return ocr_engine_dict[f"{det_model}_{rec_model}"] def select_table_model(img, table_engine_type, det_model, rec_model): if table_engine_type == "RapidTable(SLANet)": return rapid_table_engine, table_engine_type elif table_engine_type == "RapidTable(SLANet-plus)": return SLANet_plus_table_Engine, table_engine_type elif table_engine_type == "RapidTable(unitable)": return unitable_table_Engine, table_engine_type elif table_engine_type == "wired_table_v1": return wired_table_engine_v1, table_engine_type elif table_engine_type == "wired_table_v2": print("使用v2 wired table") return wired_table_engine_v2, table_engine_type elif table_engine_type == "lineless_table": return lineless_table_engine, table_engine_type elif table_engine_type == "auto": cls, elasp = table_cls(img) if cls == 'wired': table_engine = wired_table_engine_v2 return table_engine, "wired_table_v2" return lineless_table_engine, "lineless_table" def process_image(img_input, small_box_cut_enhance, table_engine_type, char_ocr, rotated_fix, col_threshold, row_threshold): det_model="mobile_det" rec_model="mobile_rec" img = img_loader(img_input) start = time.time() table_engine, talbe_type = select_table_model(img, table_engine_type, det_model, rec_model) ocr_engine = select_ocr_model(det_model, rec_model) ocr_res, ocr_infer_elapse = ocr_engine(img, return_word_box=char_ocr) det_cost, cls_cost, rec_cost = ocr_infer_elapse if char_ocr: ocr_res = trans_char_ocr_res(ocr_res) ocr_boxes = [box_4_2_poly_to_box_4_1(ori_ocr[0]) for ori_ocr in ocr_res] if isinstance(table_engine, RapidTable): table_results = table_engine(img, ocr_res) html, polygons, table_rec_elapse = table_results.pred_html, table_results.cell_bboxes,table_results.elapse polygons = [[polygon[0], polygon[1], polygon[4], polygon[5]] for polygon in polygons] elif isinstance(table_engine, (WiredTableRecognition, LinelessTableRecognition)): html, table_rec_elapse, polygons, logic_points, ocr_res = table_engine(img, ocr_result=ocr_res, enhance_box_line=small_box_cut_enhance, rotated_fix=rotated_fix, col_threshold=col_threshold, row_threshold=row_threshold) sum_elapse = time.time() - start all_elapse = f"- table_type: {talbe_type}\n table all cost: {sum_elapse:.5f}\n - table rec cost: {table_rec_elapse:.5f}\n - ocr cost: {det_cost + cls_cost + rec_cost:.5f}" img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) table_boxes_img = plot_rec_box(img.copy(), polygons) ocr_boxes_img = plot_rec_box(img.copy(), ocr_boxes) complete_html = format_html(html) return complete_html, table_boxes_img, ocr_boxes_img, all_elapse def main(): det_models_labels = list(det_model_dir.keys()) rec_models_labels = list(rec_model_dir.keys()) with gr.Blocks(css=""" .scrollable-container { overflow-x: auto; white-space: nowrap; } .header-links { text-align: center; } .header-links a { display: inline-block; text-align: center; margin-right: 10px; /* 调整间距 */ } """) as demo: gr.HTML( "