TEXT_OCR / app.py
Rashi123's picture
Create app.py
ab2d6b7 verified
import streamlit as st
from PIL import Image
import re
import io
import torch
from transformers import AutoModel, AutoTokenizer
import tempfile
# Function to load model and tokenizer
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model = model.eval()
return tokenizer, model
def search_keyword(extracted_text, keyword):
if not keyword:
return extracted_text
pattern = re.compile(re.escape(keyword), re.IGNORECASE)
highlighted_text = pattern.sub(lambda m: f'<span style="color: red; font-weight: bold;">{m.group()}</span>', extracted_text)
return highlighted_text
def main():
st.title("Simplified OCR Application")
# File uploader
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
# Placeholder for extracted text (simulating OCR result)
extracted_text = None
# Load model and tokenizer
tokenizer, model = load_model()
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image', use_column_width=True)
# Simulate OCR extraction (replace this with actual OCR in your full app)
if st.button('Extract Text'):
# Save the uploaded file to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
temp_filename = temp_file.name
image.save(temp_filename, format='PNG')
# Perform OCR
with st.spinner('Extracting text...'):
res = model.chat(tokenizer, temp_filename, ocr_type='ocr')
# Display result
extracted_text = res
st.session_state['extracted_text'] = extracted_text
st.subheader("Extracted Text:")
st.write(extracted_text)
# Search functionality
if 'extracted_text' in st.session_state:
keyword = st.text_input("Enter a keyword to search:")
if st.button("Search"):
if keyword:
highlighted_text = search_keyword(st.session_state['extracted_text'], keyword)
st.subheader("Search Results:")
st.write(highlighted_text, unsafe_allow_html=True)
st.download_button(
label="Download highlighted text",
data=highlighted_text.encode('utf-8'),
file_name="highlighted_text.txt",
mime="text/plain"
)
else:
st.warning("Please enter a keyword to search.")
if __name__ == "__main__":
main()