Commit
·
a280a67
1
Parent(s):
43ec419
Delete app_tsaigpt.py
Browse files- app_tsaigpt.py +0 -141
app_tsaigpt.py
DELETED
@@ -1,141 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""S22.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1pq0UO46D0emoqF8rPuD4cUznmYVSMESO
|
8 |
-
"""
|
9 |
-
|
10 |
-
# Commented out IPython magic to ensure Python compatibility.
|
11 |
-
# %pip install lightning -q
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
import torch
|
16 |
-
torch.cuda.is_available()
|
17 |
-
|
18 |
-
import glob
|
19 |
-
import math
|
20 |
-
import sys
|
21 |
-
import time
|
22 |
-
from pathlib import Path
|
23 |
-
from typing import Optional, Tuple, Union
|
24 |
-
|
25 |
-
import lightning as L
|
26 |
-
from lightning.fabric.loggers import CSVLogger
|
27 |
-
from lightning.fabric.strategies import FSDPStrategy
|
28 |
-
|
29 |
-
from tsai_gpt.model import GPT, Block, Config
|
30 |
-
from tsai_gpt.packed_dataset import CombinedDataset, PackedDataset
|
31 |
-
from tsai_gpt.speed_monitor import SpeedMonitorBase, estimate_flops, measure_flops
|
32 |
-
from tsai_gpt.speed_monitor import SpeedMonitorFabric as SpeedMonitor
|
33 |
-
from tsai_gpt.utils import chunked_cross_entropy, get_default_supported_precision, num_parameters, load_checkpoint
|
34 |
-
import os
|
35 |
-
import pickle
|
36 |
-
from contextlib import nullcontext
|
37 |
-
from torch.utils.data import DataLoader
|
38 |
-
import torch.nn.functional as F
|
39 |
-
from tsai_gpt.tokenizer import Tokenizer
|
40 |
-
import gradio as gr
|
41 |
-
|
42 |
-
model_name = "pythia-160m"
|
43 |
-
name = "redpajama"
|
44 |
-
out_dir = Path("out") / name
|
45 |
-
|
46 |
-
hparams = {k: v for k, v in locals().items() if isinstance(v, (int, float, str)) and not k.startswith("_")}
|
47 |
-
logger = CSVLogger("out", name, flush_logs_every_n_steps=log_interval)
|
48 |
-
|
49 |
-
fabric = L.Fabric(devices=1, strategy='auto', precision=None, loggers=logger)
|
50 |
-
|
51 |
-
checkpoint_path = Path("out/redpajama/iter-023999-ckpt.pth")
|
52 |
-
config = Config.from_name(model_name)
|
53 |
-
model = GPT(config)
|
54 |
-
|
55 |
-
load_checkpoint(fabric, model, checkpoint_path)
|
56 |
-
|
57 |
-
#print(model.transformer.h[0].mlp.fc.weight)
|
58 |
-
|
59 |
-
def generate( model, config, idx, max_new_tokens, temperature=1.0, top_k=None):
|
60 |
-
"""
|
61 |
-
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
|
62 |
-
the sequence max_new_tokens times, feeding the predictions back into the model each time.
|
63 |
-
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
|
64 |
-
|
65 |
-
"""
|
66 |
-
idx = idx.unsqueeze(dim=0)
|
67 |
-
for _ in range(max_new_tokens):
|
68 |
-
|
69 |
-
# # if the sequence context is growing too long we must crop it at block_size
|
70 |
-
idx_cond = idx if idx.size(1) <= config.block_size else idx[ :,-config.block_size:]
|
71 |
-
# forward the model to get the logits for the index in the sequence
|
72 |
-
idx_cd = idx
|
73 |
-
logits = model(idx_cd)
|
74 |
-
# pluck the logits at the final step and scale by desired temperature
|
75 |
-
logits = logits[:, -1, :] / temperature
|
76 |
-
# optionally crop the logits to only the top k options
|
77 |
-
if top_k is not None:
|
78 |
-
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
79 |
-
logits[logits < v[:, [-1]]] = -float('Inf')
|
80 |
-
# apply softmax to convert logits to (normalized) probabilities
|
81 |
-
probs = F.softmax(logits, dim=-1)
|
82 |
-
# sample from the distribution
|
83 |
-
idx_next = torch.multinomial(probs, num_samples=1)
|
84 |
-
# append sampled index to the running sequence and continue
|
85 |
-
idx = torch.cat((idx, idx_next), dim=1)
|
86 |
-
|
87 |
-
return idx
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
checkpoint_dir = Path('./checkpoints/meta-llama/Llama-2-7b-chat-hf')
|
92 |
-
token = Tokenizer(checkpoint_dir = checkpoint_dir)
|
93 |
-
|
94 |
-
def tsaigpt(start:str , model= model, max_new_tokens = 300, num_samples =2, tokeniser= token):
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
# -----------------------------------------------------------------------------
|
99 |
-
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
|
100 |
-
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability
|
101 |
-
seed = 1337
|
102 |
-
device = 'cpu' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
103 |
-
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16'
|
104 |
-
compile = False # use PyTorch 2.0 to compile the model to be faster
|
105 |
-
#exec(open('configurator.py').read()) # overrides from command line or config file
|
106 |
-
# -----------------------------------------------------------------------------
|
107 |
-
|
108 |
-
torch.manual_seed(seed)
|
109 |
-
torch.cuda.manual_seed(seed)
|
110 |
-
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
111 |
-
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
112 |
-
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
|
113 |
-
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
114 |
-
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
115 |
-
|
116 |
-
model.eval()
|
117 |
-
model.to(device)
|
118 |
-
if compile:
|
119 |
-
model = torch.compile(model) # requires PyTorch 2.0 (optional)
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
start_ids = tokeniser.encode(start).to(device)
|
124 |
-
#x = torch.tensor(start_ids, dtype=torch.long, device=device).clone().detach()
|
125 |
-
|
126 |
-
# run generation
|
127 |
-
with torch.no_grad():
|
128 |
-
with ctx:
|
129 |
-
|
130 |
-
y = generate(model =model, config =config , max_new_tokens = max_new_tokens, idx = start_ids ,temperature=1.0, top_k=None)
|
131 |
-
#print(decode(y[0].tolist()))
|
132 |
-
output = tokeniser.decode(y[0])
|
133 |
-
return output
|
134 |
-
|
135 |
-
INTERFACE = gr.Interface(fn=tsaigpt, inputs=[gr.Textbox(label= "Prompt", value= 'All that glisters is not gold.'),
|
136 |
-
gr.Slider(minimum = 300, maximum = 500, value= 300, label= "Maximum number of tokens to be generated")] ,
|
137 |
-
outputs=gr.Text(label= "Generated Text"), title="TSAI_GPT",
|
138 |
-
description="TSAIGPT is a transformer-based language model with only 0.16 billion parameters, trained on RedPajama 1T Sample.",
|
139 |
-
examples = [['We know what we are, but know not what we may be',300],
|
140 |
-
['Sweet are the uses of adversity which, like the toad, ugly and venomous, wears yet a precious jewel in his head',300],]
|
141 |
-
).launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|