Spaces:
Sleeping
Sleeping
import numpy as np | |
import gradio as gr | |
def ovarian(Shadow, Solid, Menopause, CA125): | |
if Shadow == "Yes": | |
Shadow = 1 | |
else: | |
Shadow = 0 | |
if Solid == "Yes": | |
Solid = 1 | |
else: | |
Solid = 0 | |
if Menopause == "Yes": | |
Menopause = 1 | |
else: | |
Menopause = 0 | |
if CA125 == "Yes": | |
CA125 = 1 | |
else: | |
CA125 = 0 | |
#print(Shadow, Solid, Menopause, CA125) | |
logit_P = -3.771109 - 2.293585*Shadow + 3.877268*Solid + 1.76309*Menopause + 1.320551*CA125 | |
e_logit_P = 2.71828182846 ** logit_P | |
prob = e_logit_P/(1+e_logit_P) * 100 | |
return "Risk of Ovarian cancer in this patient : \n" + str('%.3f' %(prob)) + " %" + "\n[Following up on the Predictive Model for Ovarian Cancer.]" | |
demo = gr.Interface( | |
ovarian, | |
[ | |
gr.Radio(["Yes", "No"]), | |
gr.Radio(["Yes", "No"]), | |
gr.Radio(["Yes", "No"]), | |
gr.Radio(["Yes", "No"]) | |
], | |
"text", | |
examples=[ | |
["Yes", "Yes", "Yes", "No"], | |
], | |
title="Predictive model of Ovarian cancer", | |
description="Here is a predictive model for ovarian cancer. Choose any four of the risk factors listed below for your patient. This model allows you to calculate the risk of ovarian cancer based on these selected factors.", | |
) | |
demo.launch() |