Rathapoom's picture
Update app.py
30beb89 verified
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import requests
import gradio as gr
import spaces
# Load model and tokenizer
model_name = 'scb10x/llama-3-typhoon-v1.5-8b-instruct-vision-preview'
@spaces.GPU(duration=120) # ใช้ GPU เป็นเวลา 120 วินาที
def load_model():
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map='auto',
trust_remote_code=True
)
return model
model = load_model()
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
def prepare_inputs(text, image):
messages = [
{"role": "system", "content": "You are a helpful vision-capable assistant who eagerly converses with the user in their language."},
{"role": "user", "content": f"<image>\n{text}"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
return inputs
@spaces.GPU(duration=60) # ใช้ GPU เป็นเวลา 60 วินาที
def predict(prompt, img_url):
try:
image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
image = image.resize((model.config.image_size, model.config.image_size))
image_tensor = model.preprocess_images([image]).to(model.device)
inputs = prepare_inputs(prompt, image)
output_ids = model.generate(
inputs,
images=image_tensor,
max_new_tokens=100,
do_sample=True,
temperature=0.2,
top_p=0.2,
repetition_penalty=1.0
)[0]
result = tokenizer.decode(output_ids[inputs.shape[1]:], skip_special_tokens=True).strip()
return result
except Exception as e:
return str(e)
# Gradio Interface
inputs = [
gr.Textbox(label="Prompt", placeholder="Ask about the food in the image"),
gr.Textbox(label="Image URL", placeholder="Enter an image URL")
]
outputs = gr.Textbox(label="Generated Output")
gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title="Food Image AI Assistant",
description="This model can analyze food images and answer questions about them."
).launch()