Spaces:
Runtime error
Runtime error
Merge branch 'milestone-3' into Milestone-3
Browse files- aiprojecttest.py +0 -215
- app.py +0 -1
aiprojecttest.py
DELETED
@@ -1,215 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""AiProjectTest.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1E4AHYbuRi_FbOMhQntdAMMZMY14hWh2e
|
8 |
-
"""
|
9 |
-
|
10 |
-
from pathlib import Path
|
11 |
-
from sklearn.model_selection import train_test_split
|
12 |
-
import torch
|
13 |
-
from torch.utils.data import Dataset
|
14 |
-
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
15 |
-
from transformers import Trainer, TrainingArguments
|
16 |
-
from torch.utils.data import DataLoader
|
17 |
-
from transformers import AdamW
|
18 |
-
import pandas as pd
|
19 |
-
|
20 |
-
df_train = pd.read_csv('train.csv')
|
21 |
-
df_test = pd.read_csv('test.csv')
|
22 |
-
df_test_labels = pd.read_csv('test_labels.csv')
|
23 |
-
|
24 |
-
model_name = "distilbert-base-uncased"
|
25 |
-
|
26 |
-
def read_file(f):
|
27 |
-
texts = f['comment_text'].tolist()
|
28 |
-
labels = []
|
29 |
-
for i in range(len(f)):
|
30 |
-
temp = []
|
31 |
-
temp.append(f['toxic'][i])
|
32 |
-
temp.append(f['severe_toxic'][i])
|
33 |
-
temp.append(f['obscene'][i])
|
34 |
-
temp.append(f['threat'][i])
|
35 |
-
temp.append(f['insult'][i])
|
36 |
-
temp.append(f['identity_hate'][i])
|
37 |
-
labels.append(temp)
|
38 |
-
return texts, labels
|
39 |
-
|
40 |
-
train_texts, train_labels = read_file(df_train)
|
41 |
-
test_texts = df_test['comment_text'].tolist()
|
42 |
-
test_labels = []
|
43 |
-
for i in range(len(df_test_labels)):
|
44 |
-
temp = []
|
45 |
-
temp.append(df_test_labels['toxic'][i])
|
46 |
-
temp.append(df_test_labels['severe_toxic'][i])
|
47 |
-
temp.append(df_test_labels['obscene'][i])
|
48 |
-
temp.append(df_test_labels['threat'][i])
|
49 |
-
temp.append(df_test_labels['insult'][i])
|
50 |
-
temp.append(df_test_labels['identity_hate'][i])
|
51 |
-
test_labels.append(temp)
|
52 |
-
|
53 |
-
train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2)
|
54 |
-
|
55 |
-
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
|
56 |
-
|
57 |
-
ind = 0
|
58 |
-
train_encodings = {'input_ids': [], 'attention_mask': []}
|
59 |
-
|
60 |
-
for i in range(len(train_texts)//16):
|
61 |
-
temp = tokenizer(train_texts[ind:ind+16], truncation=True, padding=True)
|
62 |
-
train_encodings['input_ids'] += temp['input_ids']
|
63 |
-
train_encodings['attention_mask'] += temp['attention_mask']
|
64 |
-
ind += 16
|
65 |
-
|
66 |
-
ind = 0
|
67 |
-
val_encodings = {'input_ids': [], 'attention_mask': []}
|
68 |
-
|
69 |
-
for i in range(len(val_texts)//16):
|
70 |
-
temp = tokenizer(val_texts[ind:ind+16], truncation=True, padding=True)
|
71 |
-
val_encodings['input_ids'] += temp['input_ids']
|
72 |
-
val_encodings['attention_mask'] += temp['attention_mask']
|
73 |
-
ind += 16
|
74 |
-
|
75 |
-
ind = 0
|
76 |
-
test_encodings = {'input_ids': [], 'attention_mask': []}
|
77 |
-
|
78 |
-
for i in range(len(test_texts)//16):
|
79 |
-
temp = tokenizer(test_texts[ind:ind+16], truncation=True, padding=True)
|
80 |
-
test_encodings['input_ids'] += temp['input_ids']
|
81 |
-
test_encodings['attention_mask'] += temp['attention_mask']
|
82 |
-
ind += 16
|
83 |
-
|
84 |
-
while True:
|
85 |
-
if len(train_labels) > len(train_encodings):
|
86 |
-
train_labels.pop()
|
87 |
-
else:
|
88 |
-
break
|
89 |
-
|
90 |
-
while True:
|
91 |
-
if len(val_labels) > len(val_encodings):
|
92 |
-
val_labels.pop()
|
93 |
-
else:
|
94 |
-
break
|
95 |
-
|
96 |
-
while True:
|
97 |
-
if len(test_labels) > len(test_encodings):
|
98 |
-
test_labels.pop()
|
99 |
-
else:
|
100 |
-
break
|
101 |
-
|
102 |
-
class dataset(Dataset):
|
103 |
-
def __init__(self, encodings, labels):
|
104 |
-
self.encodings = encodings
|
105 |
-
self.labels = labels
|
106 |
-
|
107 |
-
def __getitem__(self, idx):
|
108 |
-
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
109 |
-
item['labels'] = torch.tensor(self.labels[idx])
|
110 |
-
return item
|
111 |
-
|
112 |
-
def __len__(self):
|
113 |
-
return(len(self.labels))
|
114 |
-
|
115 |
-
train_dataset_list = [[], [], [], [], [], []]
|
116 |
-
for i in train_labels:
|
117 |
-
for j in range(6):
|
118 |
-
train_dataset_list[j].append(i[j])
|
119 |
-
|
120 |
-
val_dataset_list = [[], [], [], [], [], []]
|
121 |
-
for i in val_labels:
|
122 |
-
for j in range(6):
|
123 |
-
val_dataset_list[j].append(i[j])
|
124 |
-
|
125 |
-
train_dataset_0 = dataset(train_encodings, train_dataset_list[0])
|
126 |
-
train_dataset_1 = dataset(train_encodings, train_dataset_list[1])
|
127 |
-
train_dataset_2 = dataset(train_encodings, train_dataset_list[2])
|
128 |
-
train_dataset_3 = dataset(train_encodings, train_dataset_list[3])
|
129 |
-
train_dataset_4 = dataset(train_encodings, train_dataset_list[4])
|
130 |
-
train_dataset_5 = dataset(train_encodings, train_dataset_list[5])
|
131 |
-
|
132 |
-
val_dataset_0 = dataset(val_encodings, val_dataset_list[0])
|
133 |
-
val_dataset_1 = dataset(val_encodings, val_dataset_list[1])
|
134 |
-
val_dataset_2 = dataset(val_encodings, val_dataset_list[2])
|
135 |
-
val_dataset_3 = dataset(val_encodings, val_dataset_list[3])
|
136 |
-
val_dataset_4 = dataset(val_encodings, val_dataset_list[4])
|
137 |
-
val_dataset_5 = dataset(val_encodings, val_dataset_list[5])
|
138 |
-
|
139 |
-
training_args = TrainingArguments(output_dir='./results',
|
140 |
-
num_train_epochs=2,
|
141 |
-
per_device_train_batch_size=16,
|
142 |
-
per_device_eval_batch_size=64,
|
143 |
-
warmup_steps=500, learning_rate=5e-5,
|
144 |
-
weight_decay=.01, logging_dir='./logs',
|
145 |
-
logging_steps=10)
|
146 |
-
|
147 |
-
model = DistilBertForSequenceClassification.from_pretrained(model_name)
|
148 |
-
|
149 |
-
trainer_0 = Trainer(model=model, args=training_args, train_dataset=train_dataset_0, eval_dataset=val_dataset_0)
|
150 |
-
trainer_0.train()
|
151 |
-
|
152 |
-
trainer_1 = Trainer(model=model, args=training_args, train_dataset=train_dataset_1, eval_dataset=val_dataset_1)
|
153 |
-
trainer_1.train()
|
154 |
-
|
155 |
-
trainer_2 = Trainer(model=model, args=training_args, train_dataset=train_dataset_2, eval_dataset=val_dataset_2)
|
156 |
-
trainer_2.train()
|
157 |
-
|
158 |
-
trainer_3 = Trainer(model=model, args=training_args, train_dataset=train_dataset_3, eval_dataset=val_dataset_3)
|
159 |
-
trainer_3.train()
|
160 |
-
|
161 |
-
trainer_4 = Trainer(model=model, args=training_args, train_dataset=train_dataset_4, eval_dataset=val_dataset_4)
|
162 |
-
trainer_4.train()
|
163 |
-
|
164 |
-
trainer_5 = Trainer(model=model, args=training_args, train_dataset=train_dataset_5, eval_dataset=val_dataset_5)
|
165 |
-
trainer_5.train()
|
166 |
-
|
167 |
-
# train_dataset = dataset(train_encodings, train_labels)
|
168 |
-
# val_dataset = dataset(val_encodings, val_labels)
|
169 |
-
# test_dataset = dataset(test_encodings, test_labels)
|
170 |
-
|
171 |
-
# -----------------------------------------------------------------
|
172 |
-
|
173 |
-
# test_dataset_list = [[], [], [], [], [], []]
|
174 |
-
# for i in test_labels:
|
175 |
-
# for j in range(6):
|
176 |
-
# test_dataset_list[j].append(i[j])
|
177 |
-
|
178 |
-
# -----------------------------------------------------------------
|
179 |
-
|
180 |
-
# val_dataset = dataset(val_encodings, val_labels)
|
181 |
-
|
182 |
-
# test_dataset_0 = dataset(test_encodings, test_dataset_list[0])
|
183 |
-
# test_dataset_1 = dataset(test_encodings, test_dataset_list[1])
|
184 |
-
# test_dataset_2 = dataset(test_encodings, test_dataset_list[2])
|
185 |
-
# test_dataset_3 = dataset(test_encodings, test_dataset_list[3])
|
186 |
-
# test_dataset_4 = dataset(test_encodings, test_dataset_list[4])
|
187 |
-
# test_dataset_5 = dataset(test_encodings, test_dataset_list[5])
|
188 |
-
|
189 |
-
# -----------------------------------------------------------------
|
190 |
-
|
191 |
-
# device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
192 |
-
|
193 |
-
# model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
|
194 |
-
# model.to(device)
|
195 |
-
# model.train()
|
196 |
-
|
197 |
-
# train_loader = DataLoader(train_dataset_0, batch_size=16, shuffle=True)
|
198 |
-
|
199 |
-
# optim = AdamW(model.parameters(), lr=5e-5)
|
200 |
-
|
201 |
-
# num_train_epochs = 2
|
202 |
-
# for epoch in range(num_train_epochs):
|
203 |
-
# for batch in train_loader:
|
204 |
-
# optim.zero_grad()
|
205 |
-
# input_ids = batch['input_ids'].to(device)
|
206 |
-
# attention_mask = batch['attention_mask'].to(device)
|
207 |
-
# labels = batch['labels'].to(device)
|
208 |
-
|
209 |
-
# outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
|
210 |
-
|
211 |
-
# loss = outputs[0]
|
212 |
-
# loss.backward()
|
213 |
-
# optim.step()
|
214 |
-
|
215 |
-
# model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -183,4 +183,3 @@ if option == 'TextBlob':
|
|
183 |
# tokenizer = AutoTokenizer.from_pretrained(save_directory)
|
184 |
# model = AutoModelForSequenceClassification.from_pretrained(save_directory)
|
185 |
|
186 |
-
#------------------------------------------------------------------------
|
|
|
183 |
# tokenizer = AutoTokenizer.from_pretrained(save_directory)
|
184 |
# model = AutoModelForSequenceClassification.from_pretrained(save_directory)
|
185 |
|
|