Jeffrey Rathgeber Jr commited on
Commit
2a071e8
·
unverified ·
2 Parent(s): c39351b e67eb9f

Merge branch 'milestone-3' into Milestone-3

Browse files
Files changed (2) hide show
  1. aiprojecttest.py +0 -215
  2. app.py +0 -1
aiprojecttest.py DELETED
@@ -1,215 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """AiProjectTest.ipynb
3
-
4
- Automatically generated by Colaboratory.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1E4AHYbuRi_FbOMhQntdAMMZMY14hWh2e
8
- """
9
-
10
- from pathlib import Path
11
- from sklearn.model_selection import train_test_split
12
- import torch
13
- from torch.utils.data import Dataset
14
- from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
15
- from transformers import Trainer, TrainingArguments
16
- from torch.utils.data import DataLoader
17
- from transformers import AdamW
18
- import pandas as pd
19
-
20
- df_train = pd.read_csv('train.csv')
21
- df_test = pd.read_csv('test.csv')
22
- df_test_labels = pd.read_csv('test_labels.csv')
23
-
24
- model_name = "distilbert-base-uncased"
25
-
26
- def read_file(f):
27
- texts = f['comment_text'].tolist()
28
- labels = []
29
- for i in range(len(f)):
30
- temp = []
31
- temp.append(f['toxic'][i])
32
- temp.append(f['severe_toxic'][i])
33
- temp.append(f['obscene'][i])
34
- temp.append(f['threat'][i])
35
- temp.append(f['insult'][i])
36
- temp.append(f['identity_hate'][i])
37
- labels.append(temp)
38
- return texts, labels
39
-
40
- train_texts, train_labels = read_file(df_train)
41
- test_texts = df_test['comment_text'].tolist()
42
- test_labels = []
43
- for i in range(len(df_test_labels)):
44
- temp = []
45
- temp.append(df_test_labels['toxic'][i])
46
- temp.append(df_test_labels['severe_toxic'][i])
47
- temp.append(df_test_labels['obscene'][i])
48
- temp.append(df_test_labels['threat'][i])
49
- temp.append(df_test_labels['insult'][i])
50
- temp.append(df_test_labels['identity_hate'][i])
51
- test_labels.append(temp)
52
-
53
- train_texts, val_texts, train_labels, val_labels = train_test_split(train_texts, train_labels, test_size=.2)
54
-
55
- tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)
56
-
57
- ind = 0
58
- train_encodings = {'input_ids': [], 'attention_mask': []}
59
-
60
- for i in range(len(train_texts)//16):
61
- temp = tokenizer(train_texts[ind:ind+16], truncation=True, padding=True)
62
- train_encodings['input_ids'] += temp['input_ids']
63
- train_encodings['attention_mask'] += temp['attention_mask']
64
- ind += 16
65
-
66
- ind = 0
67
- val_encodings = {'input_ids': [], 'attention_mask': []}
68
-
69
- for i in range(len(val_texts)//16):
70
- temp = tokenizer(val_texts[ind:ind+16], truncation=True, padding=True)
71
- val_encodings['input_ids'] += temp['input_ids']
72
- val_encodings['attention_mask'] += temp['attention_mask']
73
- ind += 16
74
-
75
- ind = 0
76
- test_encodings = {'input_ids': [], 'attention_mask': []}
77
-
78
- for i in range(len(test_texts)//16):
79
- temp = tokenizer(test_texts[ind:ind+16], truncation=True, padding=True)
80
- test_encodings['input_ids'] += temp['input_ids']
81
- test_encodings['attention_mask'] += temp['attention_mask']
82
- ind += 16
83
-
84
- while True:
85
- if len(train_labels) > len(train_encodings):
86
- train_labels.pop()
87
- else:
88
- break
89
-
90
- while True:
91
- if len(val_labels) > len(val_encodings):
92
- val_labels.pop()
93
- else:
94
- break
95
-
96
- while True:
97
- if len(test_labels) > len(test_encodings):
98
- test_labels.pop()
99
- else:
100
- break
101
-
102
- class dataset(Dataset):
103
- def __init__(self, encodings, labels):
104
- self.encodings = encodings
105
- self.labels = labels
106
-
107
- def __getitem__(self, idx):
108
- item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
109
- item['labels'] = torch.tensor(self.labels[idx])
110
- return item
111
-
112
- def __len__(self):
113
- return(len(self.labels))
114
-
115
- train_dataset_list = [[], [], [], [], [], []]
116
- for i in train_labels:
117
- for j in range(6):
118
- train_dataset_list[j].append(i[j])
119
-
120
- val_dataset_list = [[], [], [], [], [], []]
121
- for i in val_labels:
122
- for j in range(6):
123
- val_dataset_list[j].append(i[j])
124
-
125
- train_dataset_0 = dataset(train_encodings, train_dataset_list[0])
126
- train_dataset_1 = dataset(train_encodings, train_dataset_list[1])
127
- train_dataset_2 = dataset(train_encodings, train_dataset_list[2])
128
- train_dataset_3 = dataset(train_encodings, train_dataset_list[3])
129
- train_dataset_4 = dataset(train_encodings, train_dataset_list[4])
130
- train_dataset_5 = dataset(train_encodings, train_dataset_list[5])
131
-
132
- val_dataset_0 = dataset(val_encodings, val_dataset_list[0])
133
- val_dataset_1 = dataset(val_encodings, val_dataset_list[1])
134
- val_dataset_2 = dataset(val_encodings, val_dataset_list[2])
135
- val_dataset_3 = dataset(val_encodings, val_dataset_list[3])
136
- val_dataset_4 = dataset(val_encodings, val_dataset_list[4])
137
- val_dataset_5 = dataset(val_encodings, val_dataset_list[5])
138
-
139
- training_args = TrainingArguments(output_dir='./results',
140
- num_train_epochs=2,
141
- per_device_train_batch_size=16,
142
- per_device_eval_batch_size=64,
143
- warmup_steps=500, learning_rate=5e-5,
144
- weight_decay=.01, logging_dir='./logs',
145
- logging_steps=10)
146
-
147
- model = DistilBertForSequenceClassification.from_pretrained(model_name)
148
-
149
- trainer_0 = Trainer(model=model, args=training_args, train_dataset=train_dataset_0, eval_dataset=val_dataset_0)
150
- trainer_0.train()
151
-
152
- trainer_1 = Trainer(model=model, args=training_args, train_dataset=train_dataset_1, eval_dataset=val_dataset_1)
153
- trainer_1.train()
154
-
155
- trainer_2 = Trainer(model=model, args=training_args, train_dataset=train_dataset_2, eval_dataset=val_dataset_2)
156
- trainer_2.train()
157
-
158
- trainer_3 = Trainer(model=model, args=training_args, train_dataset=train_dataset_3, eval_dataset=val_dataset_3)
159
- trainer_3.train()
160
-
161
- trainer_4 = Trainer(model=model, args=training_args, train_dataset=train_dataset_4, eval_dataset=val_dataset_4)
162
- trainer_4.train()
163
-
164
- trainer_5 = Trainer(model=model, args=training_args, train_dataset=train_dataset_5, eval_dataset=val_dataset_5)
165
- trainer_5.train()
166
-
167
- # train_dataset = dataset(train_encodings, train_labels)
168
- # val_dataset = dataset(val_encodings, val_labels)
169
- # test_dataset = dataset(test_encodings, test_labels)
170
-
171
- # -----------------------------------------------------------------
172
-
173
- # test_dataset_list = [[], [], [], [], [], []]
174
- # for i in test_labels:
175
- # for j in range(6):
176
- # test_dataset_list[j].append(i[j])
177
-
178
- # -----------------------------------------------------------------
179
-
180
- # val_dataset = dataset(val_encodings, val_labels)
181
-
182
- # test_dataset_0 = dataset(test_encodings, test_dataset_list[0])
183
- # test_dataset_1 = dataset(test_encodings, test_dataset_list[1])
184
- # test_dataset_2 = dataset(test_encodings, test_dataset_list[2])
185
- # test_dataset_3 = dataset(test_encodings, test_dataset_list[3])
186
- # test_dataset_4 = dataset(test_encodings, test_dataset_list[4])
187
- # test_dataset_5 = dataset(test_encodings, test_dataset_list[5])
188
-
189
- # -----------------------------------------------------------------
190
-
191
- # device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
192
-
193
- # model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
194
- # model.to(device)
195
- # model.train()
196
-
197
- # train_loader = DataLoader(train_dataset_0, batch_size=16, shuffle=True)
198
-
199
- # optim = AdamW(model.parameters(), lr=5e-5)
200
-
201
- # num_train_epochs = 2
202
- # for epoch in range(num_train_epochs):
203
- # for batch in train_loader:
204
- # optim.zero_grad()
205
- # input_ids = batch['input_ids'].to(device)
206
- # attention_mask = batch['attention_mask'].to(device)
207
- # labels = batch['labels'].to(device)
208
-
209
- # outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
210
-
211
- # loss = outputs[0]
212
- # loss.backward()
213
- # optim.step()
214
-
215
- # model.eval()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py CHANGED
@@ -183,4 +183,3 @@ if option == 'TextBlob':
183
  # tokenizer = AutoTokenizer.from_pretrained(save_directory)
184
  # model = AutoModelForSequenceClassification.from_pretrained(save_directory)
185
 
186
- #------------------------------------------------------------------------
 
183
  # tokenizer = AutoTokenizer.from_pretrained(save_directory)
184
  # model = AutoModelForSequenceClassification.from_pretrained(save_directory)
185