File size: 6,907 Bytes
d0ef04f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
import numpy as np
from PIL import Image
import torch

import os
import shutil
import config
from models.yolo import YOLOv3
from utils.data import PascalDataModule
from utils.loss import YoloLoss
from utils.gradcam import generate_gradcam
from utils.utils import generate_result
from markdown import model_stats, data_stats

datamodule = PascalDataModule(
    train_csv_path=f"{config.DATASET}/train.csv",
    test_csv_path=f"{config.DATASET}/test.csv",
    batch_size=config.BATCH_SIZE,
    shuffle=config.SHUFFLE,
    num_workers=os.cpu_count() - 1,
)
datamodule.setup()


class FilterModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.yolo = YOLOv3.load_from_checkpoint(
            "model.ckpt",
            in_channels=3,
            num_classes=config.NUM_CLASSES,
            epochs=config.NUM_EPOCHS,
            loss_fn=YoloLoss,
            datamodule=datamodule,
            learning_rate=config.LEARNING_RATE,
            maxlr=config.LEARNING_RATE,
            scheduler_steps=len(datamodule.train_dataloader()),
            device_count=config.NUM_WORKERS,
        )
        self.yolo = self.yolo.to("cpu")

    def forward(self, x):
        x = self.yolo(x)
        return x[-1]


model = FilterModel()

prediction_image = None


def upload_file(files):
    file_paths = [file.name for file in files]
    return file_paths


def read_image(path):
    img = Image.open(path)
    img.load()
    data = np.asarray(img, dtype="uint8")
    return data


def sample_images():
    all_imgs = os.listdir(config.IMG_DIR)
    rand_inds = np.random.random_integers(0, len(all_imgs), 10).tolist()
    images = [f"{config.IMG_DIR}/{all_imgs[ind]}" for ind in rand_inds]
    return images


def get_gradcam_images(gradcam_layer, images, gradcam_opacity):
    gradcam_images = []
    target_layers = [model.yolo.layers[int(gradcam_layer)]]
    gradcam_images = generate_gradcam(
        model=model,
        target_layers=target_layers,
        images=images,
        use_cuda=False,
        transparency=gradcam_opacity,
    )
    return gradcam_images


def show_hide_gradcam(status):
    if not status:
        return [gr.update(visible=False) for i in range(3)]
    return [gr.update(visible=True) for i in range(3)]


def set_prediction_image(evt: gr.SelectData, gallery):
    global prediction_image
    if isinstance(gallery[evt.index], dict):
        prediction_image = gallery[evt.index]["name"]
    else:
        prediction_image = gallery[evt.index][0]["name"]


def predict(is_gradcam, gradcam_layer, gradcam_opacity):
    gradcam_images = None
    img = read_image(prediction_image)
    image_transformed = config.test_transforms(image=img, bboxes=[])["image"]
    if is_gradcam:
        images = [image_transformed]
        gradcam_images = get_gradcam_images(gradcam_layer, images, gradcam_opacity)

    data = image_transformed.unsqueeze(0)

    if not os.path.exists("output"):
        os.mkdir("output")
    else:
        shutil.rmtree("output")
        os.mkdir("output")
    generate_result(
        model=model.yolo,
        data=data,
        thresh=0.6,
        iou_thresh=0.5,
        anchors=model.yolo.scaled_anchors,
    )
    result_images = os.listdir("output")
    result_images = [
        f"output/{file}" for file in result_images if file.endswith(".png")
    ]
    return {
        output: gr.update(value=result_images[0]),
        gradcam_output: gr.update(value=gradcam_images[0]),
    }


with gr.Blocks() as app:
    gr.Markdown("## ERA Session13 - PASCAL-VOC Object Detection with YoloV3")
    with gr.Row():
        with gr.Column():
            with gr.Box():
                is_gradcam = gr.Checkbox(
                    label="GradCAM Images",
                    info="Display GradCAM images?",
                )
                gradcam_layer = gr.Dropdown(
                    choices=list(range(len(model.yolo.layers))),
                    label="Select the layer",
                    info="Please select the layer for which the GradCAM is required",
                    interactive=True,
                    visible=False,
                )
                gradcam_opacity = gr.Slider(
                    minimum=0,
                    maximum=1,
                    value=0.6,
                    label="Opacity",
                    info="Opacity of GradCAM output",
                    interactive=True,
                    visible=False,
                )

                is_gradcam.input(
                    show_hide_gradcam,
                    inputs=[is_gradcam],
                    outputs=[gradcam_layer, gradcam_opacity],
                )
            with gr.Box():
                # file_output = gr.File(file_types=["image"])
                with gr.Group():
                    upload_gallery = gr.Gallery(
                        value=None,
                        label="Uploaded images",
                        show_label=False,
                        elem_id="gallery_upload",
                        columns=5,
                        rows=2,
                        height="auto",
                        object_fit="contain",
                    )
                    upload_button = gr.UploadButton(
                        "Click to Upload images",
                        file_types=["image"],
                        file_count="multiple",
                    )
                    upload_button.upload(upload_file, upload_button, upload_gallery)

                with gr.Group():
                    sample_gallery = gr.Gallery(
                        value=sample_images,
                        label="Sample images",
                        show_label=True,
                        elem_id="gallery_sample",
                        columns=5,
                        rows=2,
                        height="auto",
                        object_fit="contain",
                    )

                upload_gallery.select(set_prediction_image, inputs=[upload_gallery])
                sample_gallery.select(set_prediction_image, inputs=[sample_gallery])

            run_btn = gr.Button()
        with gr.Column():
            with gr.Box():
                output = gr.Image(value=None, label="Model Result")
            with gr.Box():
                gradcam_output = gr.Image(value=None, label="GradCAM Image")

        run_btn.click(
            predict,
            inputs=[
                is_gradcam,
                gradcam_layer,
                gradcam_opacity,
            ],
            outputs=[output, gradcam_output],
        )

    with gr.Row():
        with gr.Box():
            with gr.Row():
                with gr.Column():
                    with gr.Box():
                        gr.Markdown(model_stats)
                with gr.Column():
                    with gr.Box():
                        gr.Markdown(data_stats)

app.launch()