File size: 4,117 Bytes
d0ef04f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import albumentations as A
import cv2
import torch

from albumentations.pytorch import ToTensorV2
from utils.utils import seed_everything

DATASET = "PASCAL_VOC"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# seed_everything()  # If you want deterministic behavior
DEVICE_COUNT = torch.cuda.device_count()
NUM_WORKERS = 0
BATCH_SIZE = 128
SHUFFLE = True
IMAGE_SIZE = 416
NUM_CLASSES = 20
LEARNING_RATE = 1e-3
WEIGHT_DECAY = 1e-4
NUM_EPOCHS = 40
CONF_THRESHOLD = 0.05
MAP_IOU_THRESH = 0.5
NMS_IOU_THRESH = 0.45
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8]
PIN_MEMORY = True
LOAD_MODEL = False
SAVE_MODEL = True
CHECKPOINT_FILE = "checkpoint.pth.tar"
IMG_DIR = DATASET + "/images/"
LABEL_DIR = DATASET + "/labels/"
P_MOSAIC = 0.5

ANCHORS = [
    [(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)],
    [(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)],
    [(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)],
]  # Note these have been rescaled to be between [0, 1]

means = [0.485, 0.456, 0.406]

scale = 1.1
train_transforms = A.Compose(
    [
        A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)),
        A.PadIfNeeded(
            min_height=int(IMAGE_SIZE * scale),
            min_width=int(IMAGE_SIZE * scale),
            border_mode=cv2.BORDER_CONSTANT,
        ),
        A.Rotate(limit=10, interpolation=1, border_mode=4),
        A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE),
        A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4),
        A.OneOf(
            [
                A.ShiftScaleRotate(
                    rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT
                ),
                # A.Affine(shear=15, p=0.5, mode="constant"),
            ],
            p=1.0,
        ),
        A.HorizontalFlip(p=0.5),
        A.Blur(p=0.1),
        A.CLAHE(p=0.1),
        A.Posterize(p=0.1),
        A.ToGray(p=0.1),
        A.ChannelShuffle(p=0.05),
        A.Normalize(
            mean=[0, 0, 0],
            std=[1, 1, 1],
            max_pixel_value=255,
        ),
        ToTensorV2(),
    ],
    bbox_params=A.BboxParams(
        format="yolo",
        min_visibility=0.4,
        label_fields=[],
    ),
)
test_transforms = A.Compose(
    [
        A.LongestMaxSize(max_size=IMAGE_SIZE),
        A.PadIfNeeded(
            min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
        ),
        A.Normalize(
            mean=[0, 0, 0],
            std=[1, 1, 1],
            max_pixel_value=255,
        ),
        ToTensorV2(),
    ],
    bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]),
)

PASCAL_CLASSES = [
    "aeroplane",
    "bicycle",
    "bird",
    "boat",
    "bottle",
    "bus",
    "car",
    "cat",
    "chair",
    "cow",
    "diningtable",
    "dog",
    "horse",
    "motorbike",
    "person",
    "pottedplant",
    "sheep",
    "sofa",
    "train",
    "tvmonitor",
]

COCO_LABELS = [
    "person",
    "bicycle",
    "car",
    "motorcycle",
    "airplane",
    "bus",
    "train",
    "truck",
    "boat",
    "traffic light",
    "fire hydrant",
    "stop sign",
    "parking meter",
    "bench",
    "bird",
    "cat",
    "dog",
    "horse",
    "sheep",
    "cow",
    "elephant",
    "bear",
    "zebra",
    "giraffe",
    "backpack",
    "umbrella",
    "handbag",
    "tie",
    "suitcase",
    "frisbee",
    "skis",
    "snowboard",
    "sports ball",
    "kite",
    "baseball bat",
    "baseball glove",
    "skateboard",
    "surfboard",
    "tennis racket",
    "bottle",
    "wine glass",
    "cup",
    "fork",
    "knife",
    "spoon",
    "bowl",
    "banana",
    "apple",
    "sandwich",
    "orange",
    "broccoli",
    "carrot",
    "hot dog",
    "pizza",
    "donut",
    "cake",
    "chair",
    "couch",
    "potted plant",
    "bed",
    "dining table",
    "toilet",
    "tv",
    "laptop",
    "mouse",
    "remote",
    "keyboard",
    "cell phone",
    "microwave",
    "oven",
    "toaster",
    "sink",
    "refrigerator",
    "book",
    "clock",
    "vase",
    "scissors",
    "teddy bear",
    "hair drier",
    "toothbrush",
]