Spaces:
Sleeping
Sleeping
""" | |
Implementation of Yolo Loss Function similar to the one in Yolov3 paper, | |
the difference from what I can tell is I use CrossEntropy for the classes | |
instead of BinaryCrossEntropy. | |
""" | |
import random | |
import torch | |
import torch.nn as nn | |
from utils.utils import intersection_over_union | |
class YoloLoss(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.mse = nn.MSELoss() | |
self.bce = nn.BCEWithLogitsLoss() | |
self.entropy = nn.CrossEntropyLoss() | |
self.sigmoid = nn.Sigmoid() | |
# Constants signifying how much to pay for each respective part of the loss | |
self.lambda_class = 1 | |
self.lambda_noobj = 10 | |
self.lambda_obj = 1 | |
self.lambda_box = 10 | |
def forward(self, predictions, target, anchors): | |
# Check where obj and noobj (we ignore if target == -1) | |
obj = target[..., 0] == 1 # in paper this is Iobj_i | |
noobj = target[..., 0] == 0 # in paper this is Inoobj_i | |
# ======================= # | |
# FOR NO OBJECT LOSS # | |
# ======================= # | |
no_object_loss = self.bce( | |
(predictions[..., 0:1][noobj]), | |
(target[..., 0:1][noobj]), | |
) | |
# ==================== # | |
# FOR OBJECT LOSS # | |
# ==================== # | |
anchors = anchors.reshape(1, 3, 1, 1, 2) | |
box_preds = torch.cat( | |
[ | |
self.sigmoid(predictions[..., 1:3]), | |
torch.exp(predictions[..., 3:5]) * anchors, | |
], | |
dim=-1, | |
) | |
ious = intersection_over_union(box_preds[obj], target[..., 1:5][obj]).detach() | |
# ious = intersection_over_union(box_preds[obj], target[..., 1:5][obj]) | |
object_loss = self.mse( | |
self.sigmoid(predictions[..., 0:1][obj]), ious * target[..., 0:1][obj] | |
) | |
# ======================== # | |
# FOR BOX COORDINATES # | |
# ======================== # | |
predictions[..., 1:3] = self.sigmoid(predictions[..., 1:3]) # x,y coordinates | |
target[..., 3:5] = torch.log( | |
(1e-16 + target[..., 3:5] / anchors) | |
) # width, height coordinates | |
box_loss = self.mse(predictions[..., 1:5][obj], target[..., 1:5][obj]) | |
# ================== # | |
# FOR CLASS LOSS # | |
# ================== # | |
class_loss = self.entropy( | |
(predictions[..., 5:][obj]), | |
(target[..., 5][obj].long()), | |
) | |
# print("__________________________________") | |
# print(self.lambda_box * box_loss) | |
# print(self.lambda_obj * object_loss) | |
# print(self.lambda_noobj * no_object_loss) | |
# print(self.lambda_class * class_loss) | |
# print("\n") | |
return ( | |
self.lambda_box * box_loss | |
+ self.lambda_obj * object_loss | |
+ self.lambda_noobj * no_object_loss | |
+ self.lambda_class * class_loss | |
) | |