import albumentations as A import cv2 import torch from albumentations.pytorch import ToTensorV2 from utils.utils import seed_everything DATASET = "PASCAL_VOC" DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # seed_everything() # If you want deterministic behavior DEVICE_COUNT = torch.cuda.device_count() NUM_WORKERS = 0 BATCH_SIZE = 128 SHUFFLE = True IMAGE_SIZE = 416 NUM_CLASSES = 20 LEARNING_RATE = 1e-3 WEIGHT_DECAY = 1e-4 NUM_EPOCHS = 40 CONF_THRESHOLD = 0.05 MAP_IOU_THRESH = 0.5 NMS_IOU_THRESH = 0.45 S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8] PIN_MEMORY = True LOAD_MODEL = False SAVE_MODEL = True CHECKPOINT_FILE = "checkpoint.pth.tar" IMG_DIR = DATASET + "/images/" LABEL_DIR = DATASET + "/labels/" P_MOSAIC = 0.5 ANCHORS = [ [(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)], [(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)], [(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)], ] # Note these have been rescaled to be between [0, 1] means = [0.485, 0.456, 0.406] scale = 1.1 train_transforms = A.Compose( [ A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)), A.PadIfNeeded( min_height=int(IMAGE_SIZE * scale), min_width=int(IMAGE_SIZE * scale), border_mode=cv2.BORDER_CONSTANT, ), A.Rotate(limit=10, interpolation=1, border_mode=4), A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE), A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4), A.OneOf( [ A.ShiftScaleRotate( rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT ), # A.Affine(shear=15, p=0.5, mode="constant"), ], p=1.0, ), A.HorizontalFlip(p=0.5), A.Blur(p=0.1), A.CLAHE(p=0.1), A.Posterize(p=0.1), A.ToGray(p=0.1), A.ChannelShuffle(p=0.05), A.Normalize( mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255, ), ToTensorV2(), ], bbox_params=A.BboxParams( format="yolo", min_visibility=0.4, label_fields=[], ), ) test_transforms = A.Compose( [ A.LongestMaxSize(max_size=IMAGE_SIZE), A.PadIfNeeded( min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT ), A.Normalize( mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255, ), ToTensorV2(), ], bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]), ) PASCAL_CLASSES = [ "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor", ] COCO_LABELS = [ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", ]