import numpy as np from pytorch_grad_cam import EigenCAM from pytorch_grad_cam.utils.image import show_cam_on_image import matplotlib.pyplot as plt def generate_gradcam(model, target_layers, images, use_cuda=True, transparency=0.6): results = [] targets = None cam = EigenCAM(model, target_layers, use_cuda=use_cuda) for image in images: input_tensor = image.unsqueeze(0) grayscale_cam = cam(input_tensor, targets=targets) grayscale_cam = grayscale_cam[0, :] img = input_tensor.squeeze(0).to("cpu") rgb_img = np.transpose(img, (1, 2, 0)) rgb_img = rgb_img.numpy() cam_image = show_cam_on_image( rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency ) results.append(cam_image) return results def visualize_gradcam(images, figsize=(10, 10), rows=2, cols=5): fig = plt.figure(figsize=figsize) for i in range(len(images)): plt.subplot(rows, cols, i + 1) plt.imshow(images[i]) plt.xticks([]) plt.yticks([])