import torch with open("data/input.txt") as f: text = f.read() chars = sorted(list(set(text))) vocab_size = len(chars) stoi = {ch: i for i, ch in enumerate(chars)} itos = {i: ch for i, ch in enumerate(chars)} def encode(s): return [stoi[c] for c in s] def decode(l): return "".join([itos[i] for i in l]) data = torch.tensor(encode(text), dtype=torch.long) n = int(0.9 * len(data)) train_data = data[:n] val_data = data[n:] def get_batch(split, block_size, batch_size): data = train_data if split == "train" else val_data ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([data[i : i + block_size] for i in ix]) y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix]) return x, y