ravi.naik
Added source
4db4d66
raw
history blame
2.1 kB
import torchvision
import lightning as L
from torch.utils.data import DataLoader
from utils.transforms import train_transform, test_transform
class Cifar10SearchDataset(torchvision.datasets.CIFAR10):
def __init__(self, root="~/data", train=True, download=True, transform=None):
super().__init__(root=root, train=train, download=download, transform=transform)
def __getitem__(self, index):
image, label = self.data[index], self.targets[index]
if self.transform is not None:
transformed = self.transform(image=image)
image = transformed["image"]
return image, label
class CIFARDataModule(L.LightningDataModule):
def __init__(
self, data_dir="data", batch_size=512, shuffle=True, num_workers=4
) -> None:
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.shuffle = shuffle
self.num_workers = num_workers
def prepare_data(self) -> None:
pass
def setup(self, stage=None):
self.train_dataset = Cifar10SearchDataset(
root=self.data_dir, train=True, transform=train_transform
)
self.val_dataset = Cifar10SearchDataset(
root=self.data_dir, train=False, transform=test_transform
)
self.test_dataset = Cifar10SearchDataset(
root=self.data_dir, train=False, transform=test_transform
)
def train_dataloader(self):
return DataLoader(
dataset=self.train_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
)
def val_dataloader(self):
return DataLoader(
dataset=self.val_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
)
def test_dataloader(self):
return DataLoader(
dataset=self.test_dataset,
batch_size=self.batch_size,
shuffle=self.shuffle,
num_workers=self.num_workers,
)