import numpy as np from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget from pytorch_grad_cam.utils.image import show_cam_on_image import matplotlib.pyplot as plt def generate_gradcam(model, target_layers, images, labels, rgb_imgs): results = [] cam = GradCAM(model=model, target_layers=target_layers, use_cuda=True) for image, label, np_image in zip(images, labels, rgb_imgs): targets = [ClassifierOutputTarget(label.item())] # You can also pass aug_smooth=True and eigen_smooth=True, to apply smoothing. grayscale_cam = cam( input_tensor=image.unsqueeze(0), targets=targets, aug_smooth=True ) # In this example grayscale_cam has only one image in the batch: grayscale_cam = grayscale_cam[0, :] visualization = show_cam_on_image( np_image / np_image.max(), grayscale_cam, use_rgb=True ) results.append(visualization) return results def visualize_gradcam(misimgs, mistgts, mispreds, classes): fig, axes = plt.subplots(len(misimgs) // 2, 2) fig.tight_layout() for ax, img, tgt, pred in zip(axes.ravel(), misimgs, mistgts, mispreds): ax.imshow(img) ax.set_title(f"{classes[tgt]} | {classes[pred]}") ax.grid(False) ax.set_axis_off() plt.show() def plot_gradcam(model, data, classes, target_layers, number_of_samples, inv_normalize=None, targets=None, transparency = 0.60, figsize=(10,10), rows=2, cols=5): fig = plt.figure(figsize=figsize) cam = GradCAM(model=model, target_layers=target_layers, use_cuda=True) for i in range(number_of_samples): plt.subplot(rows, cols, i + 1) input_tensor = data[i][0] # Get the activations of the layer for the images grayscale_cam = cam(input_tensor=input_tensor, targets=targets) grayscale_cam = grayscale_cam[0, :] # Get back the original image img = input_tensor.squeeze(0).to('cpu') if inv_normalize is not None: img = inv_normalize(img) rgb_img = np.transpose(img, (1, 2, 0)) rgb_img = rgb_img.numpy() # Mix the activations on the original image visualization = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True, image_weight=transparency) # Display the images on the plot plt.imshow(visualization) plt.title(f"Label: {classes[data[i][1].item()]} \n Prediction: {classes[data[i][2].item()]}") plt.xticks([]) plt.yticks([])