Spaces:
Build error
Build error
File size: 7,826 Bytes
87074fa be09e8d 87074fa 9e61276 87074fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
from youtube_transcript_api import YouTubeTranscriptApi
from transformers import AutoTokenizer
from transformers import pipeline
from transformers import AutoModelForQuestionAnswering
import pandas as pd
from sentence_transformers import SentenceTransformer, util
import torch
model_ckpt = "deepset/minilm-uncased-squad2"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
model = AutoModelForQuestionAnswering.from_pretrained(model_ckpt)
modelST = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
#input - video link, output - full transcript
def get_transcript(link):
print("******** Inside get_transcript ********")
print(f"link to be extracted is : {link}")
video_id = link.split("=")[1]
# Handle additional query parameters such as timestamp, ...
video_id = video_id.split("&")[0]
print(f"video id extracted is : {video_id}")
transcript = YouTubeTranscriptApi.get_transcript(video_id)
FinalTranscript = ' '.join([i['text'] for i in transcript])
return FinalTranscript,transcript, video_id
#input - question and transcript, output - answer timestamp
def get_answers_timestamp(question, final_transcript, transcript):
print("******** Inside get_answers_timestamp ********")
context = final_transcript
print(f"Input Question is : {question}")
print(f"Type of trancript is : {type(context)}, Length of transcript is : {len(context)}")
inputs = tokenizer(question, context, return_overflowing_tokens=True, max_length=512, stride = 25)
#getting a list of contexts available after striding
contx=[]
for window in inputs["input_ids"]:
#print(f"{tokenizer.decode(window)} \n")
contx.append(tokenizer.decode(window).split('[SEP]')[1].strip())
#print(ques)
#print(contx)
lst=[]
pipe = pipeline("question-answering", model=model, tokenizer=tokenizer)
for contexts in contx:
lst.append(pipe(question=question, context=contexts))
print(f"contx list is : {contx}")
lst_scores = [dicts['score'] for dicts in lst]
print(f"lst_scores is : {lst_scores}")
#getting highest and second highest scores
idxmax = lst_scores.index(max(lst_scores))
lst_scores.remove(max(lst_scores))
idxmax2 = lst_scores.index(max(lst_scores))
sentence_for_timestamp = lst[idxmax]['answer']
sentence_for_timestamp_secondbest = lst[idxmax2]['answer']
dftranscript = pd.DataFrame(transcript)
embedding_1= modelST.encode(dftranscript.text, convert_to_tensor=True)
embedding_2 = modelST.encode(sentence_for_timestamp, convert_to_tensor=True)
embedding_3 = modelST.encode(sentence_for_timestamp_secondbest, convert_to_tensor=True)
similarity_tensor = util.pytorch_cos_sim(embedding_1, embedding_2)
idx = torch.argmax(similarity_tensor)
start_timestamp = dftranscript.iloc[[int(idx)-3]].start.values[0]
start_timestamp = round(start_timestamp)
similarity_tensor_secondbest = util.pytorch_cos_sim(embedding_1, embedding_3)
idx_secondbest = torch.argmax(similarity_tensor_secondbest)
start_timestamp_secondbest = dftranscript.iloc[[int(idx_secondbest)-3]].start.values[0]
start_timestamp_secondbest = round(start_timestamp_secondbest)
return start_timestamp, start_timestamp_secondbest
def display_vid(url, question, sample_question=None, example_video=None):
print("******** display_vid ********")
if question == '':
question = sample_question
#get embedding and youtube link for initial video
html_in = "<iframe width='560' height='315' src=" + url + " frameborder='0' allowfullscreen></iframe>"
#print(html)
if len(example_video) !=0 : #is not None:
print(f"example_video is : {example_video}")
url = example_video[0]
#get transcript
final_transcript, transcript, video_id = get_transcript(url)
#get answer timestamp
#input - question and transcript, output - answer timestamp
ans_timestamp, ans_timestamp_secondbest = get_answers_timestamp(question, final_transcript, transcript)
#created embedding width='560' height='315'
html_out = "<iframe width='730' height='400' src='https://www.youtube.com/embed/" + video_id + "?start=" + str(ans_timestamp) + "' title='YouTube video player' frameborder='0' allow='accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture' allowfullscreen></iframe>"
print(f"html output is : {html_out}")
html_out_secondbest = "<iframe width='730' height='400' src='https://www.youtube.com/embed/" + video_id + "?start=" + str(ans_timestamp_secondbest) + "' title='YouTube video player' frameborder='0' allow='accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture' allowfullscreen></iframe>"
if question == '':
print(f"Inside display_vid(), Sample_Question coming from Radio box is BEFORE : {sample_question}")
sample_ques = set_example_question(sample_question)
print(f"Inside display_vid(), Sample Question coming from Radio box is AFTER : {sample_ques}")
else:
sample_ques = question
return html_out, html_out_secondbest, sample_ques, url
def set_example_question(sample_question):
print(f"******* Inside Sample Questions ********")
print(f"Sample Question coming from Radio box is : {sample_question}")
print("What is the Return value : {gr.Radio.update(value=sample_question)}")
return gr.Radio.update(value=sample_question) #input_ques.update(example)
demo = gr.Blocks()
with demo:
gr.Markdown("<h1><center>Have you ever watched a lengthy video or podcast on YouTube and thought it would have been so much better if there had been 'explanatory' timestamps?</center></h1>")
gr.Markdown(
"""### How many times have you seen a long video/podcast on Youtube and wondered only if there would have been 'explanatory' timestamps it would have been so much better..
**Best part:** You don't even have to move away from the Space tab in your browser as the YouTube video gets played within the given View.
"""
)
with gr.Row():
input_url = gr.Textbox(label="Input a Youtube video link")
input_ques = gr.Textbox(label="Ask a Question")
with gr.Row():
output_vid = gr.HTML(label="Video from timestamp 1", show_label=True)
output_vid_secondbest = gr.HTML(label="Video from timestamp 2", show_label=True)
with gr.Row():
example_question = gr.Dropdown(
["Choose a sample question", "Does video talk about different modalities",
"does the model uses perceiver architecture?",
"when does the video talk about locked image tuning or lit?",
"comparison between gpt3 and jurassic?",
"Has flamingo passed turing test yet?",
"Any funny examples in video?",
"is it possible to download the stylegan model?",
"what was very cool?",
"what is the cool library?"], label= "Choose a sample Question", value=None)
with gr.Row():
example_video = gr.CheckboxGroup( ["https://www.youtube.com/watch?v=smUHQndcmOY"], label= "Choose a sample YouTube video")
b1 = gr.Button("Publish Video")
b1.click(display_vid, inputs=[input_url, input_ques, example_question, example_video], outputs=[output_vid, output_vid_secondbest, input_ques, input_url])
with gr.Row():
gr.Markdown('''
#### Model Credits
1. [Question Answering](https://huggingface.co/deepset/minilm-uncased-squad2)
1. [Sentence Transformer](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
''')
with gr.Row():
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=gradio-blocks_ask_questions_to_youtube_videos)")
demo.launch(enable_queue=True, debug=True) |