File size: 2,604 Bytes
4f38d5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import gradio as gr
from PIL import Image
import torch

from diffusers import (
    StableDiffusionPipeline,
    StableDiffusionImg2ImgPipeline,
)

device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Anime-Chinese-v0.1"

pipe_text2img = StableDiffusionPipeline.from_pretrained(model_id)
model_path = "souljoy/sd-pokemon-model-lora-zh"
pipe_text2img.unet.load_attn_procs(model_path)
pipe_text2img.to(device)
pipe_text2img.safety_checker = lambda images, clip_input: (images, False)
pipe_img2img = StableDiffusionImg2ImgPipeline(**pipe_text2img.components).to(device)



def infer_text2img(prompt, guide, steps, width, height, image_in, strength):
    if image_in is not None:
        init_image = image_in.convert("RGB").resize((width, height))
        output = pipe_img2img(prompt, image=init_image, strength=strength, width=width, height=height, guidance_scale=guide, num_inference_steps=steps)
    else:
        output = pipe_text2img(prompt, width=width, height=height, guidance_scale=guide, num_inference_steps=steps)
    image = output.images[0]
    return image


with gr.Blocks() as demo:
    examples = [
                ["粉色的蝴蝶,小精灵,卡通"], 
                ["可爱的狗,小精灵,卡通"], 
                ["漂亮的猫,小精灵,卡通"],
                ]
    with gr.Row():
        with gr.Column(scale=1, ):
            image_out = gr.Image(label = '输出(output)')
        with gr.Column(scale=1, ):
            image_in = gr.Image(source='upload', elem_id="image_upload", type="pil", label="参考图(非必须)(ref)")
            prompt = gr.Textbox(label = '提示词(prompt)')
            submit_btn = gr.Button("生成图像(Generate)")
            with gr.Row(scale=0.5 ):
                guide = gr.Slider(2, 15, value = 7, step = 0.1, label = '文本引导强度(guidance scale)')
                steps = gr.Slider(10, 30, value = 20, step = 1, label = '迭代次数(inference steps)')
                width = gr.Slider(384, 640, value = 512, step = 64, label = '宽度(width)')
                height = gr.Slider(384, 640, value = 512, step = 64, label = '高度(height)')
                strength = gr.Slider(0, 1.0, value = 0.8, step = 0.02, label = '参考图改变程度(strength)')
                ex = gr.Examples(examples, fn=infer_text2img, inputs=[prompt, guide, steps, width, height], outputs=image_out)

        submit_btn.click(fn = infer_text2img, inputs = [prompt, guide, steps, width, height, image_in, strength], outputs = image_out)
demo.queue(concurrency_count=1, max_size=8).launch()