import gradio as gr from PIL import Image import torch from diffusers import ( StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, ) device = "cuda" if torch.cuda.is_available() else "cpu" model_id = "IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Anime-Chinese-v0.1" pipe_text2img = StableDiffusionPipeline.from_pretrained(model_id) model_path = "souljoy/sd-pokemon-model-lora-zh" pipe_text2img.unet.load_attn_procs(model_path) pipe_text2img.to(device) pipe_text2img.safety_checker = lambda images, clip_input: (images, False) pipe_img2img = StableDiffusionImg2ImgPipeline(**pipe_text2img.components).to(device) def infer_text2img(prompt, guide, steps, width, height, image_in, strength): if image_in is not None: init_image = image_in.convert("RGB").resize((width, height)) output = pipe_img2img(prompt, image=init_image, strength=strength, width=width, height=height, guidance_scale=guide, num_inference_steps=steps) else: output = pipe_text2img(prompt, width=width, height=height, guidance_scale=guide, num_inference_steps=steps) image = output.images[0] return image with gr.Blocks() as demo: examples = [ ["粉色的蝴蝶,小精灵,卡通"], ["可爱的狗,小精灵,卡通"], ["漂亮的猫,小精灵,卡通"], ] with gr.Row(): with gr.Column(scale=1, ): image_out = gr.Image(label = '输出(output)') with gr.Column(scale=1, ): image_in = gr.Image(source='upload', elem_id="image_upload", type="pil", label="参考图(非必须)(ref)") prompt = gr.Textbox(label = '提示词(prompt)') submit_btn = gr.Button("生成图像(Generate)") with gr.Row(scale=0.5 ): guide = gr.Slider(2, 15, value = 7, step = 0.1, label = '文本引导强度(guidance scale)') steps = gr.Slider(10, 30, value = 20, step = 1, label = '迭代次数(inference steps)') width = gr.Slider(384, 640, value = 512, step = 64, label = '宽度(width)') height = gr.Slider(384, 640, value = 512, step = 64, label = '高度(height)') strength = gr.Slider(0, 1.0, value = 0.8, step = 0.02, label = '参考图改变程度(strength)') ex = gr.Examples(examples, fn=infer_text2img, inputs=[prompt, guide, steps, width, height], outputs=image_out) submit_btn.click(fn = infer_text2img, inputs = [prompt, guide, steps, width, height, image_in, strength], outputs = image_out) demo.queue(concurrency_count=1, max_size=8).launch()