from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score import random from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info from peft import PeftModel from transformers import AutoTokenizer,AutoModelForSequenceClassification,Trainer, TrainingArguments,DataCollatorWithPadding, BitsAndBytesConfig from datasets import Dataset import torch import numpy as np router = APIRouter() DESCRIPTION = "qwen_finetuned" ROUTE = "/text" @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection. Current Model: Random Baseline - Makes random predictions from the label space (0-7) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset train_test = dataset["train"] test_dataset = dataset["test"] # Start tracking emissions tracker.start() tracker.start_task("inference") #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- # Make random predictions (placeholder for actual model inference) true_labels = test_dataset["label"] predictions = [random.randint(0, 7) for _ in range(len(true_labels))] # path_adapter = 'Rcarvalo/Qwen_finetuned' path_adapter = 'MatthiasPicard/QwenTest3' path_model = "Qwen/Qwen2.5-3B-Instruct" bnb_config = BitsAndBytesConfig( load_in_8bit=True ) base_model = AutoModelForSequenceClassification.from_pretrained( path_model, num_labels=len(LABEL_MAPPING), device_map="auto", torch_dtype=torch.bfloat16, quantization_config=bnb_config ) model = PeftModel.from_pretrained(base_model, path_adapter) model.eval() tokenizer = AutoTokenizer.from_pretrained(path_model) tokenizer.pad_token = tokenizer.eos_token # Or any other token depending on your model tokenizer.pad_token_id = tokenizer.eos_token_id model.config.pad_token_id = tokenizer.pad_token_id model.config.use_cache = False model.config.pretraining_tp = 1 def preprocess_function(df): return tokenizer(df["quote"], truncation=True) tokenized_test = test_dataset.map(preprocess_function, batched=True) # training_args = torch.load("training_args.bin") # training_args.eval_strategy='no' trainer = Trainer( model=model, tokenizer=tokenizer ) preds = trainer.predict(tokenized_test) # Run inference # predictions = predict(tokenized_test) # print(predictions) predictions = np.array([np.argmax(x) for x in preds[0]]) #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy accuracy = accuracy_score(true_labels, predictions) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results