Spaces:
Sleeping
Sleeping
File size: 14,020 Bytes
42a56da 22b7c5e 42a56da a9697b4 42a56da 4722acd 9503ada 4722acd 9503ada 42a56da 4722acd 42a56da 4e412dc 42a56da 4e412dc 42a56da 4e412dc 42a56da 4e412dc 42a56da 4e412dc 42a56da 4e412dc 42a56da 4e412dc 42a56da 016de46 42a56da 016de46 42a56da 016de46 42a56da 016de46 42a56da 016de46 42a56da 016de46 42a56da 4e412dc 42a56da 4e412dc 42a56da 4e412dc 42a56da 4e412dc 42a56da 4e412dc 42a56da 016de46 7272ff8 016de46 7272ff8 42a56da 016de46 42a56da 4722acd 42a56da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import collections
import heapq
import json
import os
import logging
import gradio as gr
import numpy as np
import polars as pl
import torch
import torch.nn.functional as F
from open_clip import create_model, get_tokenizer
from torchvision import transforms
from templates import openai_imagenet_template
from components.query import get_sample
log_format = "[%(asctime)s] [%(levelname)s] [%(name)s] %(message)s"
logging.basicConfig(level=logging.INFO, format=log_format)
logger = logging.getLogger()
hf_token = os.getenv("HF_TOKEN")
# For sample images
METADATA_PATH = "components/metadata.csv"
# Read page ID as int and filter out smaller ablation duplicated training split
metadata_df = pl.read_csv(METADATA_PATH, low_memory = False)
metadata_df = metadata_df.with_columns(pl.col("eol_page_id").cast(pl.Int64))
model_str = "hf-hub:imageomics/bioclip"
tokenizer_str = "ViT-B-16"
# ReefNet/finetuned-bioclip
txt_emb_npy = "txt_emb_species.npy"
txt_names_json = "txt_emb_species.json"
min_prob = 1e-9
k = 5
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
preprocess_img = transforms.Compose(
[
transforms.ToTensor(),
transforms.Resize((224, 224), antialias=True),
transforms.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
]
)
ranks = ("Kingdom", "Phylum", "Class", "Order", "Family", "Genus", "Species")
open_domain_examples = [
["examples/Acropora-gemmifera.jpg", "Species"],
["examples/Favites_abdita.jpg", "Genus"],
["examples/Pocillopora_acuta.jpg", "Family"],
["examples/Acropora_millepora.jpg", "Species"],
["examples/porities_lobata.jpg", "Species"],
["examples/Fungia_concinna.jpg", "Family"],
]
zero_shot_examples = [
[
"examples/Acropora-gemmifera.jpg",
"Acropora aculeus\nAcropora acuminata\nAcropora anthocercis\nAcropora appressa\nAcropora arabensis"
],
["examples/porities_lobata.jpg", "Porities lobata\nPorites astreoides"],
["examples/Euphyllia_paraancora.jpg", "Euphyllia paraancora\nEuphyllia paradivisa"],
[
"examples/Montipora_patula.jpg",
"Montipora patula\nMontipora peltiformis \nMontipora saudii\nMontipora caliculata\nMontipora capitata\nMontipora cebuensis\nMontipora carinata",
],
[
"examples/Astreopora_listeri.jpg",
"Animalia Cnidaria Anthozoa Scleractinia Acroporidae Acropora hyacinthus\nAnimalia Cnidaria Anthozoa Scleractinia Acroporidae Acropora aculeus\nAnimalia Cnidaria Anthozoa Scleractinia Acroporidae Acropora anthocercis\nAnimalia Cnidaria Anthozoa Scleractinia Acroporidae Acropora millepora\nAnimalia Cnidaria Anthozoa Scleractinia Acroporidae Acropora gemmifera",
],
[
"examples/Turbinaria_heronensis.jpg",
"Turbinaria heronensis\nTurbinaria mesenterina\nTurbinaria patula\nTurbinaria peltata",
],
[
"examples/Montipora_peltiformis.jpg",
"Montipora peltiformis\nMontipora capricornis\nMontipora carinata\nMontipora cebuensis\nMontipora circumvallata",
],
[
"examples/Agaricia_agaricites.jpg",
"Agaricia agaricites\nAgaricia fragilis\nAgaricia grahamae\nAgaricia humilis\nAgaricia lamarcki",
],
]
def indexed(lst, indices):
return [lst[i] for i in indices]
@torch.no_grad()
def get_txt_features(classnames, templates):
all_features = []
for classname in classnames:
txts = [template(classname) for template in templates]
txts = tokenizer(txts).to(device)
txt_features = model.encode_text(txts)
txt_features = F.normalize(txt_features, dim=-1).mean(dim=0)
txt_features /= txt_features.norm()
all_features.append(txt_features)
all_features = torch.stack(all_features, dim=1)
return all_features
@torch.no_grad()
def zero_shot_classification(img, cls_str: str) -> dict[str, float]:
classes = [cls.strip() for cls in cls_str.split("\n") if cls.strip()]
txt_features = get_txt_features(classes, openai_imagenet_template)
img = preprocess_img(img).to(device)
img_features = model.encode_image(img.unsqueeze(0))
img_features = F.normalize(img_features, dim=-1)
logits = (model.logit_scale.exp() * img_features @ txt_features).squeeze()
probs = F.softmax(logits, dim=0).to("cpu").tolist()
return {cls: prob for cls, prob in zip(classes, probs)}
def format_name(taxon, common):
taxon = " ".join(taxon)
if not common:
return taxon
return f"{taxon} ({common})"
# @torch.no_grad()
# def open_domain_classification(img, rank: int, return_all=False):
# """
# Predicts from the entire tree of life.
# If targeting a higher rank than species, then this function predicts among all
# species, then sums up species-level probabilities for the given rank.
# """
# logger.info(f"Starting open domain classification for rank: {rank}")
# img = preprocess_img(img).to(device)
# img_features = model.encode_image(img.unsqueeze(0))
# img_features = F.normalize(img_features, dim=-1)
# logits = (model.logit_scale.exp() * img_features @ txt_emb).squeeze()
# probs = F.softmax(logits, dim=0)
# if rank + 1 == len(ranks):
# topk = probs.topk(k)
# prediction_dict = {
# format_name(*txt_names[i]): prob for i, prob in zip(topk.indices, topk.values)
# }
# logger.info(f"Top K predictions: {prediction_dict}")
# top_prediction_name = format_name(*txt_names[topk.indices[0]]).split("(")[0]
# logger.info(f"Top prediction name: {top_prediction_name}")
# sample_img, taxon_url = get_sample(metadata_df, top_prediction_name, rank)
# if return_all:
# return prediction_dict, sample_img, taxon_url
# return prediction_dict
# output = collections.defaultdict(float)
# for i in torch.nonzero(probs > min_prob).squeeze():
# output[" ".join(txt_names[i][0][: rank + 1])] += probs[i]
# topk_names = heapq.nlargest(k, output, key=output.get)
# prediction_dict = {name: output[name] for name in topk_names}
# logger.info(f"Top K names for output: {topk_names}")
# logger.info(f"Prediction dictionary: {prediction_dict}")
# top_prediction_name = topk_names[0]
# logger.info(f"Top prediction name: {top_prediction_name}")
# sample_img, taxon_url = get_sample(metadata_df, top_prediction_name, rank)
# logger.info(f"Sample image and taxon URL: {sample_img}, {taxon_url}")
# if return_all:
# return prediction_dict, sample_img, taxon_url
# return prediction_dict
@torch.no_grad()
def open_domain_classification(img, rank: int, return_all=False):
"""
Predicts from the entire tree of life.
If targeting a higher rank than species, then this function predicts among all
species, then sums up species-level probabilities for the given rank.
"""
logger.info(f"Starting open domain classification for rank: {rank}")
img = preprocess_img(img).to(device)
img_features = model.encode_image(img.unsqueeze(0))
img_features = F.normalize(img_features, dim=-1)
logits = (model.logit_scale.exp() * img_features @ txt_emb).squeeze()
probs = F.softmax(logits, dim=0)
if rank + 1 == len(ranks):
topk = probs.topk(k)
prediction_dict = {
format_name(*txt_names[i]): prob.item() for i, prob in zip(topk.indices, topk.values)
}
logger.info(f"Top K predictions: {prediction_dict}")
if return_all:
return prediction_dict, None, None # Return dummy None values for unused parts
return prediction_dict # Only return the dictionary for the Label component
output = collections.defaultdict(float)
for i in torch.nonzero(probs > min_prob).squeeze():
output[" ".join(txt_names[i][0][: rank + 1])] += probs[i]
topk_names = heapq.nlargest(k, output, key=output.get)
prediction_dict = {name: output[name] for name in topk_names}
logger.info(f"Top K names for output: {topk_names}")
if return_all:
return prediction_dict, None, None
return prediction_dict
def change_output(choice):
return gr.Label(num_top_classes=k, label=ranks[choice], show_label=True, value=None)
if __name__ == "__main__":
logger.info("Starting.")
model = create_model(model_str, output_dict=True, require_pretrained=True)
model = model.to(device)
logger.info("Created model.")
model = torch.compile(model)
logger.info("Compiled model.")
tokenizer = get_tokenizer(tokenizer_str)
txt_emb = torch.from_numpy(np.load(txt_emb_npy, mmap_mode="r")).to(device)
with open(txt_names_json) as fd:
txt_names = json.load(fd)
done = txt_emb.any(axis=0).sum().item()
total = txt_emb.shape[1]
status_msg = ""
if done != total:
status_msg = f"{done}/{total} ({done / total * 100:.1f}%) indexed"
with gr.Blocks() as app:
with gr.Tab("Open-Ended"):
with gr.Row(variant = "panel", elem_id = "images_panel"):
with gr.Column():
img_input = gr.Image(height = 400, sources=["upload"])
with gr.Column():
# display sample image of top predicted taxon
# sample_img = gr.Image(label = "Sample Image of Predicted Taxon",
# height = 400,
# show_download_button = False)
# taxon_url = gr.HTML(label = "More Information",
# elem_id = "url"
# )
open_domain_output = gr.Label(
num_top_classes=k,
label="Prediction",
show_label=True,
value=None,
)
with gr.Row():
rank_dropdown = gr.Dropdown(
label="Taxonomic Rank",
info="Which taxonomic rank to predict. Fine-grained ranks (genus, species) are more challenging.",
choices=ranks,
value="Species",
type="index",
)
open_domain_btn = gr.Button("Submit", variant="primary")
# open_domain_flag_btn = gr.Button("Flag Mistake", variant="primary")
with gr.Row():
gr.Examples(
examples=open_domain_examples,
inputs=[img_input, rank_dropdown],
cache_examples=True,
fn=lambda img, rank: open_domain_classification(img, rank, return_all=False),
outputs=[open_domain_output],
)
'''
# Flagging Code
open_domain_callback = gr.HuggingFaceDatasetSaver(
hf_token, "bioclip-demo-open-domain-mistakes", private=True
)
open_domain_callback.setup(
[img_input, rank_dropdown, open_domain_output],
flagging_dir="bioclip-demo-open-domain-mistakes/logs/flagged",
)
open_domain_flag_btn.click(
lambda *args: open_domain_callback.flag(args),
[img_input, rank_dropdown, open_domain_output],
None,
preprocess=False,
)
'''
with gr.Tab("Zero-Shot"):
with gr.Row():
img_input_zs = gr.Image(height = 400, sources=["upload"])
with gr.Row():
with gr.Column():
classes_txt = gr.Textbox(
placeholder="Montipora peltiformis \nMontipora saudii...",
lines=3,
label="Classes",
show_label=True,
info="Use taxonomic names",
)
zero_shot_btn = gr.Button("Submit", variant="primary")
with gr.Column():
zero_shot_output = gr.Label(
num_top_classes=k, label="Prediction", show_label=True
)
# zero_shot_flag_btn = gr.Button("Flag Mistake", variant="primary")
with gr.Row():
gr.Examples(
examples=zero_shot_examples,
inputs=[img_input_zs, classes_txt],
cache_examples=True,
fn=zero_shot_classification,
outputs=[zero_shot_output],
)
'''
# Flagging Code
zero_shot_callback = gr.HuggingFaceDatasetSaver(
hf_token, "bioclip-demo-zero-shot-mistakes", private=True
)
zero_shot_callback.setup(
[img_input, zero_shot_output], flagging_dir="bioclip-demo-zero-shot-mistakes/logs/flagged"
)
zero_shot_flag_btn.click(
lambda *args: zero_shot_callback.flag(args),
[img_input, zero_shot_output],
None,
preprocess=False,
)
'''
rank_dropdown.change(
fn=change_output, inputs=rank_dropdown, outputs=[open_domain_output]
)
# open_domain_btn.click(
# fn=lambda img, rank: open_domain_classification(img, rank, return_all=True),
# inputs=[img_input, rank_dropdown],
# outputs=[open_domain_output],
# )
open_domain_btn.click(
fn=lambda img, rank: open_domain_classification(img, rank, return_all=False),
inputs=[img_input, rank_dropdown],
outputs=[open_domain_output],
)
zero_shot_btn.click(
fn=zero_shot_classification,
inputs=[img_input_zs, classes_txt],
outputs=zero_shot_output,
)
app.queue(max_size=20)
app.launch(share=True)
|