import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "TheBloke/TinyLlama-1.1B-Chat-v0.3-GGUF" # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Set model to evaluation mode model.eval() st.title("Buddy Christ Chatbot") user_input = st.text_input("You:", "") if user_input: # Encode the user input inputs = tokenizer.encode(user_input, return_tensors="pt", truncation=True, max_length=1000) # Generate a response using the model response = model.generate(inputs, max_length=1000, temperature=1.0, top_k=10, pad_token_id=tokenizer.eos_token_id, gguf_mode=True) # Decode the response response_text = tokenizer.decode(response[0], skip_special_tokens=True) # Display the response in Streamlit st.write("Buddy Christ:", response_text)