File size: 6,728 Bytes
7af90a1
 
 
 
 
 
 
 
 
 
 
 
0b20754
7af90a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b20754
7af90a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b20754
7af90a1
 
 
 
0b20754
 
7af90a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import gradio as gr
from gradio_client import Client
import uuid
import warnings
import numpy as np
import json
import os
from gradio_client import Client, FileData, handle_file
warnings.filterwarnings("ignore")
import tempfile
import scipy.io.wavfile as wavfile

client = Client(os.environ['src'])


def create_frontend_demo():
    def chat_function(message, history, session_id):
        if not session_id:
            session_id = "user_" + uuid.uuid4().hex[:8]
        
        result = client.predict(
            message,                
            history,               
            session_id,            
            fn_index=0             
        )
        
        # The backend returns: empty_string, history, audio_path, display_text
        _, new_history, audio_path, display_text = result
        
        # For audio, we need to return the path string directly
        return "", new_history, audio_path, session_id, display_text

    with gr.Blocks(theme="Respair/[email protected]") as demo:
        session_id_state = gr.State("")
        
        with gr.Tabs() as tabs:
            with gr.Tab("Chat"):
                session_display = gr.Markdown("Current Session ID: None", label="Session ID")
                chatbot = gr.Chatbot(
                    label="Conversation History",
                    height=400,
                    avatar_images=[
                        "photo_2024-03-01_22-30-42.jpg",
                        "colored_blured.png"
                    ],
                    placeholder="Start chatting with Aira..."
                )
                
                msg = gr.Textbox(
                    show_label=False,
                    placeholder="Enter text and press enter",
                    container=False
                )
                
                audio_output = gr.Audio(
                    label="Aira's Response",
                    type="filepath",
                    streaming=False,
                    autoplay=True
                )

                with gr.Row():
                    audio_input = gr.Audio(
                        sources=["microphone"],
                        type="numpy",
                        label="Audio Input",
                        streaming=False
                    )

            with gr.Tab("Options"):
                with gr.Column():
                    session_input = gr.Textbox(
                        value="",
                        label="Session ID (leave blank for new session)"
                    )
                    gen_id_btn = gr.Button("Set Session ID")
                    session_msg = gr.Markdown("")
                    clear_btn = gr.Button("Clear Conversation")
                    
                    gr.Markdown("""
                                
                    This is a personal project I wanted to do for a while (G̶o̶t̶t̶a̶ ̶m̶a̶k̶e̶ ̶u̶s̶e̶ ̶o̶f̶ ̶t̶h̶i̶s̶ ̶P̶r̶o̶ ̶s̶u̶b̶ ̶p̶e̶r̶k̶s̶ ̶w̶h̶i̶l̶e̶ ̶I̶ ̶h̶a̶v̶e̶ ̶i̶t̶). <br>
                    Aira's voice is made to be unique, it doesn't belong to any real person out there. <br>
                    You can talk to her in English or Japanese, but she will only respond in Japanese (Subs over dubs, bros) ask her to give you a Subtitle if you can't talk in Japanese. <br>
                    
                    The majority of the latency depends on the HF's inference api.
                    LLM is not fine-tuned or optimized at all. the current state of conversational off-the-shelf japanese LLM seem to be less than remarkable, please beware of that.
                    
                    1. Enter your Session ID above or leave blank for a new one
                    2. Click 'Set Session ID' to confirm
                    3. Use 'Clear Conversation' to reset the chat
                    4. Your conversation history is saved based on your Session ID

                    I'll try to keep this demo up for a while.
                    
                    """)

        def respond(message, chat_history, session_id):
            return chat_function(message, chat_history, session_id)

        msg.submit(
            respond,
            inputs=[msg, chatbot, session_id_state],
            outputs=[msg, chatbot, audio_output, session_id_state, session_display]
        )

        def set_session(user_id):
            result = client.predict(
                user_id,
                fn_index=1
            )
            new_id, display_text = result
            return new_id, "", display_text

        gen_id_btn.click(
            set_session,
            inputs=[session_input],
            outputs=[session_id_state, session_msg, session_display]
        )
        
        def handle_audio(audio_data, history, session_id):
            if audio_data is None:
                return None, history, session_id, f"Current Session ID: {session_id}"
                            
            try:
                sample_rate, audio_array = audio_data
                
                with tempfile.NamedTemporaryFile(suffix='.wav', delete=True) as temp:
                    wavfile.write(temp.name, sample_rate, audio_array)
                    
                    audio = {"path": temp.name, "meta": {"_type": "gradio.FileData"}}

                    # Get the result while the temporary file still exists
                    result = client.predict(
                        audio,
                        history,
                        session_id,
                        api_name="/handle_audio"
                    )
                    
                    # Unpack only 3 values and construct the display text
                    audio_path, new_history, new_session_id = result
                    display_text = f"Current Session ID: {new_session_id}"
                
                    return audio_path, new_history, new_session_id, display_text

            except Exception as e:
                print(f"Error processing audio: {str(e)}")
                import traceback
                traceback.print_exc()  # This will print the full error traceback
                return None, history, session_id, f"Error processing audio. Session ID: {session_id}"
            
        audio_input.stop_recording(
            handle_audio,
            inputs=[audio_input, chatbot, session_id_state],
            outputs=[audio_output, chatbot, session_id_state, session_display]
        )

        clear_btn.click(
            lambda: [],
            None,
            [chatbot]
        )

    return demo

if __name__ == "__main__":
    demo = create_frontend_demo()
    demo.launch(server_name="0.0.0.0", server_port=7861, show_error=True)