Spaces:
Running
Running
File size: 1,667 Bytes
feedcc2 9d7db02 33df378 feedcc2 33df378 feedcc2 33df378 feedcc2 9d7db02 33df378 feedcc2 9d7db02 33df378 9d7db02 33df378 feedcc2 9d7db02 7949ac3 feedcc2 315ca65 9d7db02 33df378 315ca65 9d7db02 feedcc2 33df378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import argparse
import subprocess
import os
import torch
from huggingface_hub import snapshot_download
# Arguments
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="t2v-14B")
parser.add_argument("--size", type=str, default="832*480")
parser.add_argument("--frame_num", type=int, default=60)
parser.add_argument("--sample_steps", type=int, default=20)
parser.add_argument("--ckpt_dir", type=str, default="./Wan2.1-T2V-14B")
parser.add_argument("--offload_model", type=str, default="True")
parser.add_argument("--prompt", type=str, required=True)
args = parser.parse_args()
# Ensure the model is downloaded
if not os.path.exists(args.ckpt_dir):
print("๐ Downloading WAN 2.1 - 14B model from Hugging Face...")
snapshot_download(repo_id="Wan-AI/Wan2.1-T2V-14B", local_dir=args.ckpt_dir)
# Free up GPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# Run WAN 2.1 - 14B Model
command = f"python generate.py --task {args.task} --size {args.size} --frame_num {args.frame_num} --sample_steps {args.sample_steps} --ckpt_dir {args.ckpt_dir} --offload_model {args.offload_model} --prompt \"{args.prompt}\""
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
stdout, stderr = process.communicate()
# Print logs for debugging
print("๐น Output:", stdout.decode())
print("๐บ Error:", stderr.decode())
# Verify if video was created
if os.path.exists("output.mp4"):
print("โ
Video generated successfully: output.mp4")
else:
print("โ Error: Video file not found!")
|