import argparse import subprocess import os import torch from huggingface_hub import snapshot_download # Arguments parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="t2v-14B") parser.add_argument("--size", type=str, default="832*480") parser.add_argument("--frame_num", type=int, default=60) parser.add_argument("--sample_steps", type=int, default=20) parser.add_argument("--ckpt_dir", type=str, default="./Wan2.1-T2V-14B") parser.add_argument("--offload_model", type=str, default="True") parser.add_argument("--prompt", type=str, required=True) args = parser.parse_args() # Ensure the model is downloaded if not os.path.exists(args.ckpt_dir): print("🔄 Downloading WAN 2.1 - 14B model from Hugging Face...") snapshot_download(repo_id="Wan-AI/Wan2.1-T2V-14B", local_dir=args.ckpt_dir) # Free up GPU memory if torch.cuda.is_available(): torch.cuda.empty_cache() torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # Run WAN 2.1 - 14B Model command = f"python generate.py --task {args.task} --size {args.size} --frame_num {args.frame_num} --sample_steps {args.sample_steps} --ckpt_dir {args.ckpt_dir} --offload_model {args.offload_model} --prompt \"{args.prompt}\"" process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = process.communicate() # Print logs for debugging print("🔹 Output:", stdout.decode()) print("🔺 Error:", stderr.decode()) # Verify if video was created if os.path.exists("output.mp4"): print("✅ Video generated successfully: output.mp4") else: print("❌ Error: Video file not found!")