Spaces:
Running
Running
File size: 2,992 Bytes
f4ff2f8 32fdc42 f4ff2f8 0161340 f4ff2f8 f69c9e4 f4ff2f8 0161340 f4ff2f8 0161340 f4ff2f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
from fastai.vision.all import *
from fastai.vision.all import load_learner
import fastai
import nbdev
import os
import gradio as gr
import pathlib
# from google.colab import drive
# drive.mount('/content/drive/')
temp = pathlib.WindowsPath
pathlib.WindowsPath = pathlib.PosixPath
model_dir = "parrot-recognizer-v3.pkl"
model = load_learner(model_dir)
parrot_species = ['african grey parrot',
'australian king parrot',
'blue lorikeet',
'blue-and-yellow macaw',
'blue-headed parrot',
'budgerigar',
'burrowing parrot',
'caique parrot',
'catalina macaw',
'chestnut-fronted macaw',
'cockatiels',
'crimson rosella',
'cuban amazon',
'eclectus parrot',
'galah',
'golden parakeet',
'great green macaw',
'great hanging parrot',
'greater vasa parrot',
'hahn_s macaws',
'hooded parrot',
'hyacinth macaw',
'kea',
'kākāpō',
'lovebirds',
'monk parakeet',
'orange-winged amazon',
'palm cockatoo',
'parrotlet',
'plum-headed parakeet',
'puerto rican amazon',
'rainbow lorikeet',
'red-breasted parakeet',
'red-crowned amazon',
'red-crowned parakeet',
'red-fan parrot',
'red-shouldered macaw',
'red-tailed black cockatoos',
'rose-ringed parakeet',
'saint vincent amazon',
'scarlet macaw',
'senegal parrot',
'spixs macaw',
'sun conure',
'thick-billed parrot',
'turquoise-fronted amazon',
'vernal hanging parrot',
'white cockatoo',
'yellow-collared macaws',
'yellow-headed amazon']
def recognize_image(image):
pred, idx, probs = model.predict(image)
return dict(zip(parrot_species, map(float, probs)))
# im = "/content/drive/MyDrive/Learnings/fai/test_images/unknown_12.jpg"
# img = PILImage.create(im)
# img.thumbnail((192,192))
# img
# recognize_image(img)
image = gr.inputs.Image(shape=(192,192))
label = gr.outputs.Label()
examples = [
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_00.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_01.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_02.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_03.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_04.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_05.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_06.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_07.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_08.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_09.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_10.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_11.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_12.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_13.jpg",
"/content/drive/MyDrive/Learnings/fai/test_images/unknown_14.jpg",
]
iface = gr.Interface(fn=recognize_image, inputs=image, outputs=label, examples=examples)
iface.launch(inline=False, share = True)
|