import gradio as gr import torch from PIL import Image from diffusers import StableDiffusionInstructPix2PixPipeline # Define the path to the SafeTensor model model_path = "/content/uberRealisticPornMerge_urpmv12.instruct-pix2pix.safetensors" # Load the SafeTensor model safe_pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_path, torch_dtype=torch.float16, safety_checker=None).to("cuda") def generate_edited_image(input_image): # Convert the Gradio Image object to a PIL Image input_image_pil = Image.fromarray(input_image.astype('uint8'), 'RGB') # Generate the edited image using the SafeTensor model edited_image = safe_pipe(instruction="", image=input_image_pil, num_inference_steps=50).images[0] # Convert the edited image back to Gradio Image format edited_image_gradio = edited_image.cpu().numpy().astype('uint8') return edited_image_gradio # Define the input and output components for the Gradio app input_image = gr.inputs.Image(label="Upload an Input Image") output_image = gr.outputs.Image(label="Edited Image") # Create the Gradio interface gr.Interface( fn=generate_edited_image, inputs=input_image, outputs=output_image, title="SafeTensor Image Editing", description="Upload an image and generate an edited image using a SafeTensor model.", capture_session=True # This ensures that we use the same session for model inference ).launch()