Spaces:
Runtime error
Runtime error
File size: 4,240 Bytes
2edab5e 4c996b2 2edab5e 5b59271 2edab5e 5b59271 2edab5e 4c996b2 2edab5e 5b59271 182fb55 edc096b 2edab5e 5b59271 2edab5e 5b59271 2edab5e 5b59271 2edab5e 6de5ccf c92cdc7 2edab5e a043d48 c92cdc7 c0a6074 c92cdc7 2edab5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# Importing libraries for gradio app
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models
import torchvision.transforms as tt
from PIL import Image
# Moving data to CPU
def to_device(data, device):
"""Move tensor(s) to chosen device"""
if isinstance(data, (list,tuple)):
return [to_device(x, device) for x in data]
return data.to(device, non_blocking=True)
# Defining our Class for just prediction
def accuracy(outputs, labels):
_, preds = torch.max(outputs, dim=1)
return torch.tensor(torch.sum(preds == labels).item() / len(preds))
class ImageClassificationBase(nn.Module):
def validation_step(self, batch):
images, labels = batch
out = self(images) # Generate predictions
loss = F.cross_entropy(out, labels) # Calculate loss
acc = accuracy(out, labels) # Calculate accuracy
return {'val_loss': loss.detach(), 'val_acc': acc}
def validation_epoch_end(self, outputs):
batch_losses = [x['val_loss'] for x in outputs]
epoch_loss = torch.stack(batch_losses).mean() # Combine losses
batch_accs = [x['val_acc'] for x in outputs]
epoch_acc = torch.stack(batch_accs).mean() # Combine accuracies
return {'val_loss': epoch_loss.item(), 'val_acc': epoch_acc.item()}
# Defining our finetuned Resnet50 Architecture with our Classification layer
class IndianFoodModelResnet50(ImageClassificationBase):
def __init__(self, num_classes, pretrained=True):
super().__init__()
self.network = models.resnet50(pretrained=pretrained)
self.network.fc = nn.Linear(self.network.fc.in_features, num_classes)
def forward(self, xb):
return self.network(xb)
# Prediction method
@torch.no_grad()
def evaluate(model, val_loader):
model.eval()
outputs = [model.validation_step(batch) for batch in val_loader]
return model.validation_epoch_end(outputs)
# Initialising our model and moving it to CPU
classes = ['burger', 'butter_naan', 'chai', 'chapati', 'chole_bhature',
'dal_makhani', 'dhokla', 'fried_rice', 'idli', 'jalebi',
'kaathi_rolls', 'kadai_paneer', 'kulfi', 'masala_dosa', 'momos',
'paani_puri', 'pakode', 'pav_bhaji', 'pizza', 'samosa']
model = IndianFoodModelResnet50(len(classes), pretrained=True)
device = 'cpu'
to_device(model, device);
# Loading the model
ckp_path = 'indianFood-resnet50.pth'
model.load_state_dict(torch.load(ckp_path, map_location=torch.device('cpu')))
model.eval()
# Image preprocessing before prediction
stats = ((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
img_tfms = tt.Compose([tt.Resize((224, 224)),
tt.ToTensor(),
tt.Normalize(*stats, inplace = True)])
def predict_image(image, model):
xb = to_device(image.unsqueeze(0), device)
yb = model(xb)
_, preds = torch.max(yb, dim=1)
return classes[preds[0].item()]
# Function handling input, processing and output
def classify_image(path):
img = Image.open(path)
img = img_tfms(img)
label = predict_image(img, model)
return label
# Defining gradio interface functions
image = gr.inputs.Image(shape=(224, 224), type="filepath")
label = gr.outputs.Label(num_top_classes=1)
article = "<p style='text-align: center'><a href='https://' target='_blank'>DesiVisionNet</a> | <a href='https://github.com/kunal-bhadra/DesiVisionNet' target='_blank'>GitHub Repo</a></p>"
gr.Interface(
fn=classify_image,
inputs=image,
outputs=label,
examples = [["idli.jpg"], ["naan.jpg"]],
theme = "huggingface",
title = "DesiVisionNet: Indian Food Vision with ResNet",
description = "This is a Gradio demo for multi-class image classification of Indian food amongst 20 classes. The DesiVisionNet achieved 90% accuracy on our test dataset, performing well for a relatively efficient model. See the GitHub project page for detailed information below. Here, we provide a demo for real-world food classification. To use it, simply upload your image, or click one of the examples to load them.",
article = article
).launch() |