Spaces:
Sleeping
Sleeping
File size: 5,189 Bytes
5ebeb73 3b057c5 5ebeb73 125e166 5ebeb73 125e166 5ebeb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import os
import gradio as gr
import pandas as pd
from src.htr_pipeline.inferencer import Inferencer, InferencerInterface
from src.htr_pipeline.pipeline import Pipeline, PipelineInterface
class SingletonModelLoader:
_instance = None
def __new__(cls, *args, **kwargs):
if not cls._instance:
cls._instance = super(SingletonModelLoader, cls).__new__(cls, *args, **kwargs)
return cls._instance
def __init__(self):
if not hasattr(self, "inferencer"):
self.inferencer = Inferencer(local_run=True)
if not hasattr(self, "pipeline"):
self.pipeline = Pipeline(self.inferencer)
# fast track
class FastTrack:
def __init__(self, model_loader):
self.pipeline: PipelineInterface = model_loader.pipeline
def segment_to_xml(self, image, radio_button_choices):
xml_xml = "page_xml.xml"
xml_txt = "page_txt.txt"
if os.path.exists(f"./{xml_xml}"):
os.remove(f"./{xml_xml}")
rendered_xml = self.pipeline.running_htr_pipeline(image)
with open(xml_xml, "w") as f:
f.write(rendered_xml)
xml_img = self.visualize_xml_and_return_txt(image, xml_txt)
if len(radio_button_choices) < 2:
if radio_button_choices[0] == "Txt":
returned_file_extension = xml_txt
else:
returned_file_extension = xml_xml
else:
returned_file_extension = [xml_txt, xml_xml]
return xml_img, returned_file_extension, gr.update(visible=True)
def segment_to_xml_api(self, image):
rendered_xml = self.pipeline.running_htr_pipeline(image)
return rendered_xml
def visualize_xml_and_return_txt(self, img, xml_txt):
xml_img = self.pipeline.visualize_xml(img)
if os.path.exists(f"./{xml_txt}"):
os.remove(f"./{xml_txt}")
self.pipeline.parse_xml_to_txt()
return xml_img
# Custom track
class CustomTrack:
def __init__(self, model_loader):
self.inferencer: InferencerInterface = model_loader.inferencer
def region_segment(self, image, pred_score_threshold, containments_treshold):
predicted_regions, regions_cropped_ordered, _, _ = self.inferencer.predict_regions(
image, pred_score_threshold, containments_treshold
)
return predicted_regions, regions_cropped_ordered, gr.update(visible=False), gr.update(visible=True)
def line_segment(self, image, pred_score_threshold, containments_threshold):
predicted_lines, lines_cropped_ordered, _ = self.inferencer.predict_lines(
image, pred_score_threshold, containments_threshold
)
return (
predicted_lines,
image,
lines_cropped_ordered,
lines_cropped_ordered, #
lines_cropped_ordered, # temp_gallery
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
)
def transcribe_text(self, df, images):
transcription_temp_list_with_score = []
mapping_dict = {}
for image in images:
transcribed_text, prediction_score_from_htr = self.inferencer.transcribe(image)
transcription_temp_list_with_score.append((transcribed_text, prediction_score_from_htr))
df_trans_explore = pd.DataFrame(
transcription_temp_list_with_score, columns=["Transcribed text", "HTR prediction score"]
)
mapping_dict[transcribed_text] = image
yield df_trans_explore[["Transcribed text"]], df_trans_explore, mapping_dict, gr.update(
visible=False
), gr.update(visible=True), gr.update(visible=False)
def get_select_index_image(self, images_from_gallery, evt: gr.SelectData):
return images_from_gallery[evt.index]["name"]
def get_select_index_df(self, transcribed_text_df_finish, mapping_dict, evt: gr.SelectData):
df_list = transcribed_text_df_finish["Transcribed text"].tolist()
key_text = df_list[evt.index[0]]
sorted_image = mapping_dict[key_text]
new_first = [sorted_image]
new_list = [img for txt, img in mapping_dict.items() if txt != key_text]
new_first.extend(new_list)
return new_first
def download_df_to_txt(self, transcribed_df):
text_in_list = transcribed_df["Transcribed text"].tolist()
file_name = "./transcribed_text.txt"
text_file = open(file_name, "w")
for text in text_in_list:
text_file.write(text + "\n")
text_file.close()
return file_name, gr.update(visible=True)
# def transcribe_text_another_model(self, df, images):
# transcription_temp_list = []
# for image in images:
# transcribed_text = inferencer.transcribe_different_model(image)
# transcription_temp_list.append(transcribed_text)
# df_trans = pd.DataFrame(transcription_temp_list, columns=["Transcribed_text"])
# yield df_trans, df_trans, gr.update(visible=False)
if __name__ == "__main__":
pass
|