Spaces:
Sleeping
Sleeping
import os | |
import shutil | |
import gradio as gr | |
from helper.examples.examples import DemoImages | |
from src.htr_pipeline.gradio_backend import CustomTrack, SingletonModelLoader | |
model_loader = SingletonModelLoader() | |
custom_track = CustomTrack(model_loader) | |
images_for_demo = DemoImages() | |
with gr.Blocks() as stepwise_htr_tool_tab: | |
with gr.Tabs(): | |
with gr.Tab("1. Region Segmentation"): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
vis_data_folder_placeholder = gr.Markdown(visible=False) | |
name_files_placeholder = gr.Markdown(visible=False) | |
with gr.Row(): | |
input_region_image = gr.Image( | |
label="Image to Region segment", | |
# type="numpy", | |
tool="editor", | |
).style(height=350) | |
with gr.Accordion("Region segment settings:", open=False): | |
with gr.Row(): | |
reg_pred_score_threshold_slider = gr.Slider( | |
minimum=0.4, | |
maximum=1, | |
value=0.5, | |
step=0.05, | |
label="P-threshold", | |
info="""Filter and determine the confidence score | |
required for a prediction score to be considered""", | |
) | |
reg_containments_threshold_slider = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.5, | |
step=0.05, | |
label="C-threshold", | |
info="""The minimum required overlap or similarity | |
for a detected region or object to be considered valid""", | |
) | |
with gr.Row(): | |
region_segment_model_dropdown = gr.Dropdown( | |
choices=["Riksarkivet/RmtDet_region"], | |
value="Riksarkivet/RmtDet_region", | |
label="Region segment model", | |
info="Will add more models later!", | |
) | |
with gr.Row(): | |
clear_button = gr.Button("Clear", variant="secondary", elem_id="clear_button") | |
region_segment_button = gr.Button( | |
"Segment Region", | |
variant="primary", | |
elem_id="region_segment_button", | |
) # .style(full_width=False) | |
with gr.Row(): | |
with gr.Accordion("Example images to use:", open=False) as example_accord: | |
gr.Examples( | |
examples=images_for_demo.examples_list, | |
inputs=[name_files_placeholder, input_region_image], | |
label="Example images", | |
examples_per_page=5, | |
) | |
with gr.Column(scale=3): | |
output_region_image = gr.Image(label="Segmented regions", type="numpy").style(height=600) | |
############################################## | |
with gr.Tab("2. Line Segmentation"): | |
image_placeholder_lines = gr.Image( | |
label="Segmented lines", | |
# type="numpy", | |
interactive="False", | |
visible=True, | |
).style(height=600) | |
with gr.Row(visible=False) as control_line_segment: | |
with gr.Column(scale=2): | |
with gr.Box(): | |
regions_cropped_gallery = gr.Gallery( | |
label="Segmented regions", | |
show_label=False, | |
elem_id="gallery", | |
).style( | |
columns=[2], | |
rows=[2], | |
# object_fit="contain", | |
height=400, | |
preview=True, | |
container=False, | |
) | |
input_region_from_gallery = gr.Image( | |
label="Region segmentation to line segment", interactive="False", visible=False | |
).style(height=400) | |
with gr.Row(): | |
with gr.Accordion("Line segment settings:", open=False): | |
with gr.Row(): | |
line_pred_score_threshold_slider = gr.Slider( | |
minimum=0.3, | |
maximum=1, | |
value=0.4, | |
step=0.05, | |
label="Pred_score threshold", | |
info="""Filter and determine the confidence score | |
required for a prediction score to be considered""", | |
) | |
line_containments_threshold_slider = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.5, | |
step=0.05, | |
label="Containments threshold", | |
info="""The minimum required overlap or similarity | |
for a detected region or object to be considered valid""", | |
) | |
with gr.Row().style(equal_height=False): | |
line_segment_model_dropdown = gr.Dropdown( | |
choices=["Riksarkivet/RmtDet_lines"], | |
value="Riksarkivet/RmtDet_lines", | |
label="Line segment model", | |
info="Will add more models later!", | |
) | |
with gr.Row(): | |
clear_line_segment_button = gr.Button( | |
" ", | |
variant="Secondary", | |
# elem_id="center_button", | |
).style(full_width=True) | |
line_segment_button = gr.Button( | |
"Segment Lines", | |
variant="primary", | |
# elem_id="center_button", | |
).style(full_width=True) | |
with gr.Column(scale=3): | |
# gr.Markdown("""lorem ipsum""") | |
output_line_from_region = gr.Image( | |
label="Segmented lines", | |
type="numpy", | |
interactive="False", | |
).style(height=600) | |
############################################### | |
with gr.Tab("3. Transcribe Text"): | |
image_placeholder_htr = gr.Image( | |
label="Transcribed lines", | |
# type="numpy", | |
interactive="False", | |
visible=True, | |
).style(height=600) | |
with gr.Row(visible=False) as control_htr: | |
inputs_lines_to_transcribe = gr.Variable() | |
with gr.Column(scale=2): | |
image_inputs_lines_to_transcribe = gr.Image( | |
label="Transcribed lines", | |
type="numpy", | |
interactive="False", | |
visible=False, | |
).style(height=470) | |
with gr.Row(): | |
with gr.Accordion("Transcribe settings:", open=False): | |
transcriber_model = gr.Dropdown( | |
choices=["Riksarkivet/SATRN_transcriber", "microsoft/trocr-base-handwritten"], | |
value="Riksarkivet/SATRN_transcriber", | |
label="Transcriber model", | |
info="Will add more models later!", | |
) | |
with gr.Row(): | |
clear_transcribe_button = gr.Button(" ", variant="Secondary", visible=True).style( | |
full_width=True | |
) | |
transcribe_button = gr.Button("Transcribe lines", variant="primary", visible=True).style( | |
full_width=True | |
) | |
donwload_txt_button = gr.Button("Download text", variant="secondary", visible=False).style( | |
full_width=True | |
) | |
with gr.Row(): | |
txt_file_downlod = gr.File(label="Download text", visible=False) | |
with gr.Column(scale=3): | |
with gr.Row(): | |
transcribed_text_df = gr.Dataframe( | |
headers=["Transcribed text"], | |
max_rows=15, | |
col_count=(1, "fixed"), | |
wrap=True, | |
interactive=False, | |
overflow_row_behaviour="paginate", | |
).style(height=600) | |
##################################### | |
with gr.Tab("4. Explore Results"): | |
image_placeholder_explore_results = gr.Image( | |
label="Cropped transcribed lines", | |
# type="numpy", | |
interactive="False", | |
visible=True, | |
).style(height=600) | |
with gr.Row(visible=False) as control_results_transcribe: | |
with gr.Column(scale=1, visible=True): | |
with gr.Box(): | |
temp_gallery_input = gr.Variable() | |
gallery_inputs_lines_to_transcribe = gr.Gallery( | |
label="Cropped transcribed lines", | |
show_label=True, | |
elem_id="gallery_lines", | |
).style( | |
columns=[3], | |
rows=[3], | |
# object_fit="contain", | |
# height="600", | |
preview=True, | |
container=False, | |
) | |
with gr.Column(scale=1, visible=True): | |
mapping_dict = gr.Variable() | |
transcribed_text_df_finish = gr.Dataframe( | |
headers=["Transcribed text", "Pred score"], | |
max_rows=15, | |
col_count=(2, "fixed"), | |
wrap=True, | |
interactive=False, | |
overflow_row_behaviour="paginate", | |
).style(height=600) | |
# custom track | |
region_segment_button.click( | |
custom_track.region_segment, | |
inputs=[input_region_image, reg_pred_score_threshold_slider, reg_containments_threshold_slider], | |
outputs=[output_region_image, regions_cropped_gallery, image_placeholder_lines, control_line_segment], | |
) | |
regions_cropped_gallery.select( | |
custom_track.get_select_index_image, regions_cropped_gallery, input_region_from_gallery | |
) | |
transcribed_text_df_finish.select( | |
fn=custom_track.get_select_index_df, | |
inputs=[transcribed_text_df_finish, mapping_dict], | |
outputs=gallery_inputs_lines_to_transcribe, | |
) | |
line_segment_button.click( | |
custom_track.line_segment, | |
inputs=[input_region_from_gallery, line_pred_score_threshold_slider, line_containments_threshold_slider], | |
outputs=[ | |
output_line_from_region, | |
image_inputs_lines_to_transcribe, | |
inputs_lines_to_transcribe, | |
gallery_inputs_lines_to_transcribe, | |
temp_gallery_input, | |
# Hide | |
transcribe_button, | |
image_inputs_lines_to_transcribe, | |
image_placeholder_htr, | |
control_htr, | |
], | |
) | |
transcribe_button.click( | |
custom_track.transcribe_text, | |
inputs=[transcribed_text_df, inputs_lines_to_transcribe], | |
outputs=[ | |
transcribed_text_df, | |
transcribed_text_df_finish, | |
mapping_dict, | |
txt_file_downlod, | |
control_results_transcribe, | |
image_placeholder_explore_results, | |
], | |
) | |
donwload_txt_button.click( | |
custom_track.download_df_to_txt, | |
inputs=transcribed_text_df, | |
outputs=[txt_file_downlod, txt_file_downlod], | |
) | |
# def remove_temp_vis(): | |
# if os.path.exists("./vis_data"): | |
# os.remove("././vis_data") | |
# return None | |
clear_button.click( | |
lambda: ( | |
(shutil.rmtree("./vis_data") if os.path.exists("./vis_data") else None, None)[1], | |
None, | |
None, | |
None, | |
gr.update(visible=False), | |
None, | |
None, | |
None, | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
None, | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=True), | |
), | |
inputs=[], | |
outputs=[ | |
vis_data_folder_placeholder, | |
input_region_image, | |
regions_cropped_gallery, | |
input_region_from_gallery, | |
control_line_segment, | |
output_line_from_region, | |
inputs_lines_to_transcribe, | |
transcribed_text_df, | |
control_htr, | |
inputs_lines_to_transcribe, | |
image_placeholder_htr, | |
output_region_image, | |
image_inputs_lines_to_transcribe, | |
control_results_transcribe, | |
image_placeholder_explore_results, | |
image_placeholder_lines, | |
], | |
) | |