Spaces:
Running
on
T4
Running
on
T4
import os | |
import gradio as gr | |
from helper.examples.examples import DemoImages | |
from helper.utils import TrafficDataHandler | |
from src.htr_pipeline.gradio_backend import ( | |
FastTrack, | |
SingletonModelLoader, | |
compare_diff_runs_highlight, | |
compute_cer_a_and_b_with_gt, | |
update_selected_tab_image_viewer, | |
update_selected_tab_model_compare, | |
update_selected_tab_output_and_setting, | |
upload_file, | |
) | |
model_loader = SingletonModelLoader() | |
fast_track = FastTrack(model_loader) | |
images_for_demo = DemoImages() | |
terminate = False | |
with gr.Blocks() as htr_tool_tab: | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
with gr.Row(): | |
fast_track_input_region_image = gr.Image( | |
label="Image to run HTR on", type="numpy", tool="editor", elem_id="image_upload", height=395 | |
) | |
with gr.Row(): | |
with gr.Tab("HTRFLOW") as tab_output_and_setting_selector: | |
with gr.Row(): | |
stop_htr_button = gr.Button( | |
value="Stop run", | |
variant="stop", | |
) | |
htr_pipeline_button = gr.Button( | |
"Run ", | |
variant="primary", | |
visible=True, | |
elem_id="run_pipeline_button", | |
) | |
htr_pipeline_button_var = gr.State(value="htr_pipeline_button") | |
htr_pipeline_button_api = gr.Button("Run pipeline", variant="primary", visible=False, scale=1) | |
fast_file_downlod = gr.File( | |
label="Download output file", visible=True, scale=1, height=100, elem_id="download_file" | |
) | |
with gr.Tab("Visualize") as tab_image_viewer_selector: | |
with gr.Row(): | |
gr.Markdown("") | |
run_image_visualizer_button = gr.Button( | |
value="Visualize results", variant="primary", interactive=True | |
) | |
selection_text_from_image_viewer = gr.Textbox( | |
interactive=False, label="Text Selector", info="Select a line on Image Viewer to return text" | |
) | |
with gr.Tab("Compare") as tab_model_compare_selector: | |
with gr.Row(): | |
diff_runs_button = gr.Button("Compare runs", variant="primary", visible=True) | |
calc_cer_button_fast = gr.Button("Calculate CER", variant="primary", visible=True) | |
with gr.Row(): | |
cer_output_fast = gr.Textbox( | |
label="Character Error Rate:", | |
info="The percentage of characters that have been transcribed incorrectly", | |
) | |
with gr.Column(scale=4): | |
with gr.Box(): | |
with gr.Row(visible=True) as output_and_setting_tab: | |
with gr.Column(scale=2): | |
fast_name_files_placeholder = gr.Markdown(visible=False) | |
gr.Examples( | |
examples=images_for_demo.examples_list, | |
inputs=[fast_name_files_placeholder, fast_track_input_region_image], | |
label="Example images", | |
examples_per_page=5, | |
) | |
gr.Markdown(" ") | |
with gr.Column(scale=3): | |
with gr.Group(): | |
gr.Markdown(" ⚙️ Settings ") | |
with gr.Row(): | |
radio_file_input = gr.CheckboxGroup( | |
choices=["Txt", "Page XML"], | |
value=["Txt", "Page XML"], | |
label="Output file extension", | |
info="JSON and ALTO-XML will be added", | |
scale=1, | |
) | |
with gr.Row(): | |
gr.Checkbox( | |
value=True, | |
label="Binarize image", | |
info="Binarize image to reduce background noise", | |
) | |
gr.Checkbox( | |
value=True, | |
label="Output prediction threshold", | |
info="Output XML with prediction score", | |
) | |
with gr.Accordion("Advanced settings", open=False): | |
with gr.Group(): | |
with gr.Row(): | |
htr_tool_region_segment_model_dropdown = gr.Dropdown( | |
choices=["Riksarkivet/rtmdet_region"], | |
value="Riksarkivet/rtmdet_region", | |
label="Region segmentation models", | |
info="More models will be added", | |
) | |
gr.Slider( | |
minimum=0.4, | |
maximum=1, | |
value=0.5, | |
step=0.05, | |
label="P-threshold", | |
info="""Filter confidence score for a prediction score to be considered""", | |
) | |
with gr.Row(): | |
htr_tool_line_segment_model_dropdown = gr.Dropdown( | |
choices=["Riksarkivet/rtmdet_lines"], | |
value="Riksarkivet/rtmdet_lines", | |
label="Line segmentation models", | |
info="More models will be added", | |
) | |
gr.Slider( | |
minimum=0.4, | |
maximum=1, | |
value=0.5, | |
step=0.05, | |
label="P-threshold", | |
info="""Filter confidence score for a prediction score to be considered""", | |
) | |
with gr.Row(): | |
htr_tool_transcriber_model_dropdown = gr.Dropdown( | |
choices=[ | |
"Riksarkivet/trocr-base-handwritten-swe", | |
"Riksarkivet/satrn_htr", | |
"microsoft/trocr-base-handwritten", | |
"pstroe/bullinger-general-model", | |
], | |
value="Riksarkivet/trocr-base-handwritten-swe", | |
label="Text recognition models", | |
info="More models will be added", | |
) | |
gr.Slider( | |
value=0.6, | |
minimum=0.5, | |
maximum=1, | |
label="HTR threshold", | |
info="Prediction score threshold for transcribed lines", | |
scale=1, | |
) | |
with gr.Row(): | |
gr.Markdown(" More settings will be added") | |
with gr.Row(visible=False) as image_viewer_tab: | |
text_polygon_dict = gr.Variable() | |
fast_track_output_image = gr.Image( | |
label="Image Viewer", type="numpy", height=600, interactive=False | |
) | |
with gr.Column(visible=False) as model_compare_selector: | |
with gr.Row(): | |
gr.Markdown("Compare different runs (Page XML output) with Ground Truth (GT)") | |
with gr.Row(): | |
with gr.Group(): | |
upload_button_run_a = gr.UploadButton("A", file_types=[".xml"], file_count="single") | |
file_input_xml_run_a = gr.File( | |
label=None, | |
file_count="single", | |
height=100, | |
elem_id="download_file", | |
interactive=False, | |
visible=False, | |
) | |
with gr.Group(): | |
upload_button_run_b = gr.UploadButton("B", file_types=[".xml"], file_count="single") | |
file_input_xml_run_b = gr.File( | |
label=None, | |
file_count="single", | |
height=100, | |
elem_id="download_file", | |
interactive=False, | |
visible=False, | |
) | |
with gr.Group(): | |
upload_button_run_gt = gr.UploadButton("GT", file_types=[".xml"], file_count="single") | |
file_input_xml_run_gt = gr.File( | |
label=None, | |
file_count="single", | |
height=100, | |
elem_id="download_file", | |
interactive=False, | |
visible=False, | |
) | |
with gr.Tab("Comparing run A with B"): | |
text_diff_runs = gr.HighlightedText( | |
label="A with B", | |
combine_adjacent=True, | |
show_legend=True, | |
color_map={"+": "red", "-": "green"}, | |
) | |
with gr.Tab("Compare run A with Ground Truth"): | |
text_diff_gt = gr.HighlightedText( | |
label="A with GT", | |
combine_adjacent=True, | |
show_legend=True, | |
color_map={"+": "red", "-": "green"}, | |
) | |
xml_rendered_placeholder_for_api = gr.Textbox(placeholder="XML", visible=False) | |
htr_event_click_event = htr_pipeline_button.click( | |
fast_track.segment_to_xml, | |
inputs=[fast_track_input_region_image, radio_file_input, htr_tool_transcriber_model_dropdown], | |
outputs=[fast_file_downlod, fast_file_downlod], | |
api_name=False, | |
) | |
htr_pipeline_button_api.click( | |
fast_track.segment_to_xml_api, | |
inputs=[fast_track_input_region_image], | |
outputs=[xml_rendered_placeholder_for_api], | |
queue=False, | |
api_name="run_htr_pipeline", | |
) | |
tab_output_and_setting_selector.select( | |
fn=update_selected_tab_output_and_setting, | |
outputs=[output_and_setting_tab, image_viewer_tab, model_compare_selector], | |
api_name=False, | |
) | |
tab_image_viewer_selector.select( | |
fn=update_selected_tab_image_viewer, | |
outputs=[output_and_setting_tab, image_viewer_tab, model_compare_selector], | |
api_name=False, | |
) | |
tab_model_compare_selector.select( | |
fn=update_selected_tab_model_compare, | |
outputs=[output_and_setting_tab, image_viewer_tab, model_compare_selector], | |
api_name=False, | |
) | |
def stop_function(): | |
from src.htr_pipeline.utils import pipeline_inferencer | |
pipeline_inferencer.terminate = True | |
gr.Info("The HTR execution was halted") | |
stop_htr_button.click( | |
fn=stop_function, | |
inputs=None, | |
outputs=None, | |
api_name=False, | |
# cancels=[htr_event_click_event], | |
) | |
run_image_visualizer_button.click( | |
fn=fast_track.visualize_image_viewer, | |
inputs=fast_track_input_region_image, | |
outputs=[fast_track_output_image, text_polygon_dict], | |
api_name=False, | |
) | |
fast_track_output_image.select( | |
fast_track.get_text_from_coords, | |
inputs=text_polygon_dict, | |
outputs=selection_text_from_image_viewer, | |
api_name=False, | |
) | |
upload_button_run_a.upload( | |
upload_file, inputs=upload_button_run_a, outputs=[file_input_xml_run_a, file_input_xml_run_a], api_name=False | |
) | |
upload_button_run_b.upload( | |
upload_file, inputs=upload_button_run_b, outputs=[file_input_xml_run_b, file_input_xml_run_b], api_name=False | |
) | |
upload_button_run_gt.upload( | |
upload_file, inputs=upload_button_run_gt, outputs=[file_input_xml_run_gt, file_input_xml_run_gt], api_name=False | |
) | |
diff_runs_button.click( | |
fn=compare_diff_runs_highlight, | |
inputs=[file_input_xml_run_a, file_input_xml_run_b, file_input_xml_run_gt], | |
outputs=[text_diff_runs, text_diff_gt], | |
api_name=False, | |
) | |
calc_cer_button_fast.click( | |
fn=compute_cer_a_and_b_with_gt, | |
inputs=[file_input_xml_run_a, file_input_xml_run_b, file_input_xml_run_gt], | |
outputs=cer_output_fast, | |
api_name=False, | |
) | |
SECRET_KEY = os.environ.get("HUB_TOKEN", False) | |
if SECRET_KEY: | |
htr_pipeline_button.click( | |
fn=TrafficDataHandler.store_metric_data, | |
inputs=htr_pipeline_button_var, | |
) | |