Spaces:
Running
on
T4
Running
on
T4
test new scheduler
Browse files- .gitignore +6 -0
- app.py +100 -50
- helper/text/text_about.py +7 -3
- helper/text/text_app.py +6 -2
- requirements.txt +5 -1
- src/htr_pipeline/gradio_backend.py +4 -4
- tabs/htr_tool.py +9 -0
- tabs/stepwise_htr_tool.py +82 -46
.gitignore
CHANGED
@@ -23,3 +23,9 @@ page_txt.txt
|
|
23 |
transcribed_text.txt
|
24 |
helper/examples/.cache_images/
|
25 |
helper/examples/images/localtest/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
transcribed_text.txt
|
24 |
helper/examples/.cache_images/
|
25 |
helper/examples/images/localtest/
|
26 |
+
.env
|
27 |
+
TODO.md
|
28 |
+
.cache_images/
|
29 |
+
traffic_data.db
|
30 |
+
ip_data.csv
|
31 |
+
data/
|
app.py
CHANGED
@@ -1,4 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
from helper.gradio_config import css, theme
|
4 |
from helper.text.text_about import TextAbout
|
@@ -8,8 +18,78 @@ from helper.text.text_roadmap import TextRoadmap
|
|
8 |
from tabs.htr_tool import htr_tool_tab
|
9 |
from tabs.stepwise_htr_tool import stepwise_htr_tool_tab
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
with gr.Blocks(title="HTR Riksarkivet", theme=theme, css=css) as demo:
|
12 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
with gr.Tabs():
|
15 |
with gr.Tab("HTR Tool"):
|
@@ -18,61 +98,16 @@ with gr.Blocks(title="HTR Riksarkivet", theme=theme, css=css) as demo:
|
|
18 |
with gr.Tab("Stepwise HTR Tool"):
|
19 |
stepwise_htr_tool_tab.render()
|
20 |
|
21 |
-
with gr.Tab("How to use"):
|
22 |
-
with gr.Tabs():
|
23 |
-
with gr.Tab("HTR Tool"):
|
24 |
-
with gr.Row(equal_height=False):
|
25 |
-
with gr.Column():
|
26 |
-
gr.Markdown(TextHowTo.htr_tool)
|
27 |
-
with gr.Column():
|
28 |
-
gr.Markdown(TextHowTo.both_htr_tool_video)
|
29 |
-
gr.Video(
|
30 |
-
value="https://github.com/Borg93/htr_gradio_file_placeholder/raw/main/htr_tool_media_cut.mp4",
|
31 |
-
label="How to use HTR Tool",
|
32 |
-
)
|
33 |
-
gr.Markdown(TextHowTo.reach_out)
|
34 |
-
|
35 |
-
with gr.Tab("Stepwise HTR Tool"):
|
36 |
-
with gr.Row(equal_height=False):
|
37 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool)
|
38 |
-
with gr.Row():
|
39 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool_tab_intro)
|
40 |
-
with gr.Row():
|
41 |
-
with gr.Accordion("The tabs for the Stepwise HTR Tool:", open=True):
|
42 |
-
with gr.Tabs():
|
43 |
-
with gr.Tab("1. Region Segmentation"):
|
44 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool_tab1)
|
45 |
-
with gr.Tab("2. Line Segmentation"):
|
46 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool_tab2)
|
47 |
-
with gr.Tab("3. Transcribe Text"):
|
48 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool_tab3)
|
49 |
-
with gr.Tab("4. Explore Results"):
|
50 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool_tab4)
|
51 |
-
gr.Markdown(TextHowTo.stepwise_htr_tool_end)
|
52 |
-
|
53 |
-
with gr.Tab("API & Duplicate for Privat use"):
|
54 |
-
with gr.Row():
|
55 |
-
with gr.Column():
|
56 |
-
gr.Markdown(TextHowTo.htr_tool_api_text)
|
57 |
-
gr.Code(
|
58 |
-
value=TextHowTo.code_for_api,
|
59 |
-
language="python",
|
60 |
-
interactive=False,
|
61 |
-
show_label=False,
|
62 |
-
)
|
63 |
-
with gr.Column():
|
64 |
-
gr.Markdown(TextHowTo.duplicatin_space_htr_text)
|
65 |
-
gr.Markdown(TextHowTo.figure_htr_hardware)
|
66 |
-
gr.Markdown(TextHowTo.duplicatin_for_privat)
|
67 |
-
|
68 |
with gr.Tab("About"):
|
69 |
with gr.Tabs():
|
70 |
with gr.Tab("Project"):
|
71 |
with gr.Row():
|
72 |
with gr.Column():
|
73 |
-
gr.Markdown(TextAbout.
|
74 |
with gr.Column():
|
75 |
gr.Markdown(TextAbout.text_src_code_data_models)
|
|
|
|
|
76 |
with gr.Row():
|
77 |
with gr.Tabs():
|
78 |
with gr.Tab("I. Binarization"):
|
@@ -88,6 +123,21 @@ with gr.Blocks(title="HTR Riksarkivet", theme=theme, css=css) as demo:
|
|
88 |
with gr.Row():
|
89 |
gr.Markdown(TextRoadmap.text_contribution)
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
with gr.Tab("Roadmap"):
|
92 |
with gr.Row():
|
93 |
with gr.Column():
|
@@ -95,7 +145,7 @@ with gr.Blocks(title="HTR Riksarkivet", theme=theme, css=css) as demo:
|
|
95 |
with gr.Column():
|
96 |
gr.Markdown(TextRoadmap.discussion)
|
97 |
|
98 |
-
|
99 |
|
100 |
|
101 |
demo.queue(concurrency_count=2, max_size=2)
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import sqlite3
|
5 |
+
from datetime import datetime
|
6 |
+
|
7 |
import gradio as gr
|
8 |
+
import huggingface_hub
|
9 |
+
import pandas as pd
|
10 |
+
import pytz
|
11 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
12 |
|
13 |
from helper.gradio_config import css, theme
|
14 |
from helper.text.text_about import TextAbout
|
|
|
18 |
from tabs.htr_tool import htr_tool_tab
|
19 |
from tabs.stepwise_htr_tool import stepwise_htr_tool_tab
|
20 |
|
21 |
+
DB_FILE = "./traffic_data.db"
|
22 |
+
|
23 |
+
TOKEN = os.environ.get("HUB_TOKEN")
|
24 |
+
repo = huggingface_hub.Repository(
|
25 |
+
local_dir="data", repo_type="dataset", clone_from="Riksarkivet/traffic_demo_data", use_auth_token=TOKEN
|
26 |
+
)
|
27 |
+
repo.git_pull()
|
28 |
+
|
29 |
+
# Set db to latest
|
30 |
+
shutil.copyfile("./data/traffic_data.db", DB_FILE)
|
31 |
+
|
32 |
+
|
33 |
+
def hash_ip(ip_address):
|
34 |
+
return hashlib.sha256(ip_address.encode()).hexdigest()
|
35 |
+
|
36 |
+
|
37 |
+
# Create table if it doesn't already exist
|
38 |
+
db = sqlite3.connect(DB_FILE)
|
39 |
+
try:
|
40 |
+
db.execute("SELECT * FROM ip_data").fetchall()
|
41 |
+
db.close()
|
42 |
+
except sqlite3.OperationalError:
|
43 |
+
db.execute(
|
44 |
+
"""
|
45 |
+
CREATE TABLE ip_data (id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
|
46 |
+
current_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
|
47 |
+
hashed_ip TEXT)
|
48 |
+
"""
|
49 |
+
)
|
50 |
+
db.commit()
|
51 |
+
db.close()
|
52 |
+
|
53 |
+
|
54 |
+
def current_time_sw():
|
55 |
+
swedish_tz = pytz.timezone("Europe/Stockholm")
|
56 |
+
return datetime.now(swedish_tz).strftime("%Y-%m-%d %H:%M:%S")
|
57 |
+
|
58 |
+
|
59 |
+
def add_ip_data(request: gr.Request):
|
60 |
+
host = request.client.host
|
61 |
+
hashed_ip = hash_ip(host)
|
62 |
+
|
63 |
+
db = sqlite3.connect(DB_FILE)
|
64 |
+
cursor = db.cursor()
|
65 |
+
cursor.execute("INSERT INTO ip_data(current_time, hashed_ip) VALUES(?,?)", [current_time_sw(), hashed_ip])
|
66 |
+
db.commit()
|
67 |
+
db.close()
|
68 |
+
|
69 |
+
|
70 |
+
def backup_db():
|
71 |
+
shutil.copyfile(DB_FILE, "./data/traffic_data.db")
|
72 |
+
db = sqlite3.connect(DB_FILE)
|
73 |
+
ip_data = db.execute("SELECT * FROM ip_data").fetchall()
|
74 |
+
pd.DataFrame(ip_data, columns=["id", "current_time", "hashed_ip"]).to_csv("./data/ip_data.csv", index=False)
|
75 |
+
|
76 |
+
print("updating traffic_data")
|
77 |
+
repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.now()}")
|
78 |
+
|
79 |
+
|
80 |
+
scheduler = BackgroundScheduler()
|
81 |
+
scheduler.add_job(func=backup_db, trigger="interval", seconds=60)
|
82 |
+
scheduler.start()
|
83 |
+
|
84 |
+
|
85 |
with gr.Blocks(title="HTR Riksarkivet", theme=theme, css=css) as demo:
|
86 |
+
with gr.Row():
|
87 |
+
with gr.Column(scale=1):
|
88 |
+
text_ip_output = gr.Markdown()
|
89 |
+
with gr.Column(scale=1):
|
90 |
+
gr.Markdown(TextApp.title_markdown)
|
91 |
+
with gr.Column(scale=1):
|
92 |
+
gr.Markdown(TextApp.title_markdown_img)
|
93 |
|
94 |
with gr.Tabs():
|
95 |
with gr.Tab("HTR Tool"):
|
|
|
98 |
with gr.Tab("Stepwise HTR Tool"):
|
99 |
stepwise_htr_tool_tab.render()
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
with gr.Tab("About"):
|
102 |
with gr.Tabs():
|
103 |
with gr.Tab("Project"):
|
104 |
with gr.Row():
|
105 |
with gr.Column():
|
106 |
+
gr.Markdown(TextAbout.intro_text)
|
107 |
with gr.Column():
|
108 |
gr.Markdown(TextAbout.text_src_code_data_models)
|
109 |
+
with gr.Row():
|
110 |
+
gr.Markdown(TextAbout.pipeline_overview_text)
|
111 |
with gr.Row():
|
112 |
with gr.Tabs():
|
113 |
with gr.Tab("I. Binarization"):
|
|
|
123 |
with gr.Row():
|
124 |
gr.Markdown(TextRoadmap.text_contribution)
|
125 |
|
126 |
+
with gr.Tab("API & Duplicate for Privat use"):
|
127 |
+
with gr.Row():
|
128 |
+
with gr.Column():
|
129 |
+
gr.Markdown(TextHowTo.htr_tool_api_text)
|
130 |
+
gr.Code(
|
131 |
+
value=TextHowTo.code_for_api,
|
132 |
+
language="python",
|
133 |
+
interactive=False,
|
134 |
+
show_label=False,
|
135 |
+
)
|
136 |
+
with gr.Column():
|
137 |
+
gr.Markdown(TextHowTo.duplicatin_space_htr_text)
|
138 |
+
gr.Markdown(TextHowTo.figure_htr_hardware)
|
139 |
+
gr.Markdown(TextHowTo.duplicatin_for_privat)
|
140 |
+
|
141 |
with gr.Tab("Roadmap"):
|
142 |
with gr.Row():
|
143 |
with gr.Column():
|
|
|
145 |
with gr.Column():
|
146 |
gr.Markdown(TextRoadmap.discussion)
|
147 |
|
148 |
+
demo.load(add_ip_data)
|
149 |
|
150 |
|
151 |
demo.queue(concurrency_count=2, max_size=2)
|
helper/text/text_about.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
class TextAbout:
|
2 |
# About text
|
3 |
-
|
4 |
|
5 |
## Introduction
|
6 |
The Swedish National Archives introduces a demonstrational end-to-end HTR (Handwritten Text Recognition) pipeline. This pipeline comprises two instance segmentation models: one designated for segmenting text-regions and another for isolating text-lines within these regions, coupled with an HTR model for image-to-text transcription. The objective of this project is to establish a generic pipeline capable of processing running-text documents spanning from 1600 to 1900.
|
@@ -12,10 +12,14 @@ class TextAbout:
|
|
12 |
- Navigate to the > **About** > **Roadmap**.
|
13 |
|
14 |
To understand how to utilize this application through a REST API, self-host or via Docker,
|
15 |
-
- Navigate to the > **How to Use** > **API & Duplicate for Private Use**.
|
|
|
|
|
16 |
|
17 |
## The Pipeline in Overview
|
18 |
-
|
|
|
|
|
19 |
The steps in the pipeline can be seen below as follows:
|
20 |
"""
|
21 |
|
|
|
1 |
class TextAbout:
|
2 |
# About text
|
3 |
+
intro_text = """
|
4 |
|
5 |
## Introduction
|
6 |
The Swedish National Archives introduces a demonstrational end-to-end HTR (Handwritten Text Recognition) pipeline. This pipeline comprises two instance segmentation models: one designated for segmenting text-regions and another for isolating text-lines within these regions, coupled with an HTR model for image-to-text transcription. The objective of this project is to establish a generic pipeline capable of processing running-text documents spanning from 1600 to 1900.
|
|
|
12 |
- Navigate to the > **About** > **Roadmap**.
|
13 |
|
14 |
To understand how to utilize this application through a REST API, self-host or via Docker,
|
15 |
+
- Navigate to the > **About** > **How to Use** > **API & Duplicate for Private Use**.
|
16 |
+
|
17 |
+
"""
|
18 |
|
19 |
## The Pipeline in Overview
|
20 |
+
pipeline_overview_text = """
|
21 |
+
## The Pipeline in Overview
|
22 |
+
|
23 |
The steps in the pipeline can be seen below as follows:
|
24 |
"""
|
25 |
|
helper/text/text_app.py
CHANGED
@@ -1,12 +1,16 @@
|
|
1 |
class TextApp:
|
2 |
title_markdown = """
|
3 |
|
4 |
-
<img src="https://raw.githubusercontent.com/Borg93/Riksarkivet_docs/main/docs/assets/fav-removebg-preview.png" width="4%" align="right" margin-right="100" />
|
5 |
|
6 |
-
<h1><center>
|
7 |
|
8 |
<h3><center> Swedish National Archives - Riksarkivet </center></h3>"""
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
if __name__ == "__main__":
|
12 |
pass
|
|
|
1 |
class TextApp:
|
2 |
title_markdown = """
|
3 |
|
|
|
4 |
|
5 |
+
<h1><center> HTRflow - Demo </center></h1>
|
6 |
|
7 |
<h3><center> Swedish National Archives - Riksarkivet </center></h3>"""
|
8 |
|
9 |
+
title_markdown_img = """
|
10 |
+
<img src="https://raw.githubusercontent.com/Borg93/Riksarkivet_docs/main/docs/assets/fav-removebg-preview.png" width="13%" align="right" margin-right="100" />
|
11 |
+
|
12 |
+
"""
|
13 |
+
|
14 |
|
15 |
if __name__ == "__main__":
|
16 |
pass
|
requirements.txt
CHANGED
@@ -7,9 +7,13 @@ numpy==1.25.0
|
|
7 |
opencv-python-headless==4.7.0.72
|
8 |
Jinja2==3.1.2
|
9 |
transformers==4.30.2
|
10 |
-
huggingface-hub
|
11 |
datasets==2.14.5
|
12 |
requests==2.31.0
|
|
|
|
|
|
|
|
|
13 |
# pillow==9.5.0
|
14 |
|
15 |
|
|
|
7 |
opencv-python-headless==4.7.0.72
|
8 |
Jinja2==3.1.2
|
9 |
transformers==4.30.2
|
10 |
+
huggingface-hub
|
11 |
datasets==2.14.5
|
12 |
requests==2.31.0
|
13 |
+
apscheduler
|
14 |
+
pytz
|
15 |
+
jiwer
|
16 |
+
evaluate
|
17 |
# pillow==9.5.0
|
18 |
|
19 |
|
src/htr_pipeline/gradio_backend.py
CHANGED
@@ -117,7 +117,7 @@ class CustomTrack:
|
|
117 |
gr.update(visible=True),
|
118 |
)
|
119 |
|
120 |
-
def transcribe_text(self,
|
121 |
gr.Info("Running Transcribe Lines")
|
122 |
transcription_temp_list_with_score = []
|
123 |
mapping_dict = {}
|
@@ -142,11 +142,11 @@ class CustomTrack:
|
|
142 |
transcription_temp_list_with_score, columns=["Transcribed text", "Pred score"]
|
143 |
)
|
144 |
|
|
|
|
|
145 |
mapping_dict[transcribed_text] = image
|
146 |
|
147 |
-
yield df_trans_explore
|
148 |
-
["Transcribed text"]
|
149 |
-
], df_trans_explore, mapping_dict, bool_to_show_control_results_transcribe, bool_to_show_placeholder
|
150 |
|
151 |
def get_select_index_image(self, images_from_gallery, evt: gr.SelectData):
|
152 |
return images_from_gallery[evt.index]["name"]
|
|
|
117 |
gr.update(visible=True),
|
118 |
)
|
119 |
|
120 |
+
def transcribe_text(self, images):
|
121 |
gr.Info("Running Transcribe Lines")
|
122 |
transcription_temp_list_with_score = []
|
123 |
mapping_dict = {}
|
|
|
142 |
transcription_temp_list_with_score, columns=["Transcribed text", "Pred score"]
|
143 |
)
|
144 |
|
145 |
+
joined_transcription_temp_list = "\n".join([tup[0] for tup in transcription_temp_list_with_score])
|
146 |
+
|
147 |
mapping_dict[transcribed_text] = image
|
148 |
|
149 |
+
yield joined_transcription_temp_list, df_trans_explore, mapping_dict, bool_to_show_control_results_transcribe, bool_to_show_placeholder
|
|
|
|
|
150 |
|
151 |
def get_select_index_image(self, images_from_gallery, evt: gr.SelectData):
|
152 |
return images_from_gallery[evt.index]["name"]
|
tabs/htr_tool.py
CHANGED
@@ -155,6 +155,15 @@ with gr.Blocks() as htr_tool_tab:
|
|
155 |
api_name="predict",
|
156 |
)
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
def update_selected_tab_output_and_setting():
|
159 |
return gr.update(visible=True), gr.update(visible=False)
|
160 |
|
|
|
155 |
api_name="predict",
|
156 |
)
|
157 |
|
158 |
+
def dummy_update_htr_tool_transcriber_model_dropdown(htr_tool_transcriber_model_dropdown):
|
159 |
+
return gr.update(value="Riksarkivet/satrn_htr")
|
160 |
+
|
161 |
+
htr_tool_transcriber_model_dropdown.change(
|
162 |
+
fn=dummy_update_htr_tool_transcriber_model_dropdown,
|
163 |
+
inputs=htr_tool_transcriber_model_dropdown,
|
164 |
+
outputs=htr_tool_transcriber_model_dropdown,
|
165 |
+
)
|
166 |
+
|
167 |
def update_selected_tab_output_and_setting():
|
168 |
return gr.update(visible=True), gr.update(visible=False)
|
169 |
|
tabs/stepwise_htr_tool.py
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
import os
|
2 |
import shutil
|
3 |
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
from helper.examples.examples import DemoImages
|
|
|
7 |
from src.htr_pipeline.gradio_backend import CustomTrack, SingletonModelLoader
|
8 |
|
9 |
model_loader = SingletonModelLoader()
|
@@ -12,9 +14,29 @@ custom_track = CustomTrack(model_loader)
|
|
12 |
|
13 |
images_for_demo = DemoImages()
|
14 |
|
|
|
|
|
|
|
15 |
with gr.Blocks() as stepwise_htr_tool_tab:
|
16 |
with gr.Tabs():
|
17 |
with gr.Tab("1. Region Segmentation"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
with gr.Row():
|
19 |
with gr.Column(scale=2):
|
20 |
vis_data_folder_placeholder = gr.Markdown(visible=False)
|
@@ -25,38 +47,9 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
25 |
label="Image to Region segment",
|
26 |
# type="numpy",
|
27 |
tool="editor",
|
28 |
-
height=
|
29 |
)
|
30 |
|
31 |
-
with gr.Accordion("Region segment settings:", open=False):
|
32 |
-
with gr.Row():
|
33 |
-
reg_pred_score_threshold_slider = gr.Slider(
|
34 |
-
minimum=0.4,
|
35 |
-
maximum=1,
|
36 |
-
value=0.5,
|
37 |
-
step=0.05,
|
38 |
-
label="P-threshold",
|
39 |
-
info="""Filter and determine the confidence score
|
40 |
-
required for a prediction score to be considered""",
|
41 |
-
)
|
42 |
-
reg_containments_threshold_slider = gr.Slider(
|
43 |
-
minimum=0,
|
44 |
-
maximum=1,
|
45 |
-
value=0.5,
|
46 |
-
step=0.05,
|
47 |
-
label="C-threshold",
|
48 |
-
info="""The minimum required overlap or similarity
|
49 |
-
for a detected region or object to be considered valid""",
|
50 |
-
)
|
51 |
-
|
52 |
-
with gr.Row():
|
53 |
-
region_segment_model_dropdown = gr.Dropdown(
|
54 |
-
choices=["Riksarkivet/RmtDet_region"],
|
55 |
-
value="Riksarkivet/RmtDet_region",
|
56 |
-
label="Region segment model",
|
57 |
-
info="Will add more models later!",
|
58 |
-
)
|
59 |
-
|
60 |
with gr.Row():
|
61 |
clear_button = gr.Button("Clear", variant="secondary", elem_id="clear_button")
|
62 |
|
@@ -66,7 +59,36 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
66 |
elem_id="region_segment_button",
|
67 |
)
|
68 |
|
69 |
-
with gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
with gr.Accordion("Example images to use:", open=False) as example_accord:
|
71 |
gr.Examples(
|
72 |
examples=images_for_demo.examples_list,
|
@@ -76,7 +98,7 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
76 |
)
|
77 |
|
78 |
with gr.Column(scale=3):
|
79 |
-
output_region_image = gr.Image(label="Segmented regions", type="numpy", height=
|
80 |
|
81 |
##############################################
|
82 |
with gr.Tab("2. Line Segmentation"):
|
@@ -188,14 +210,11 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
188 |
|
189 |
with gr.Column(scale=3):
|
190 |
with gr.Row():
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
interactive=False,
|
197 |
-
overflow_row_behaviour="paginate",
|
198 |
-
height=600,
|
199 |
)
|
200 |
|
201 |
#####################################
|
@@ -219,18 +238,27 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
219 |
columns=[3],
|
220 |
rows=[3],
|
221 |
# object_fit="contain",
|
222 |
-
height=
|
223 |
preview=True,
|
224 |
container=False,
|
225 |
)
|
226 |
|
227 |
dataframe_text_index = gr.Textbox(
|
228 |
label="Text from DataFrame selection",
|
229 |
-
|
230 |
-
lines=2,
|
231 |
interactive=False,
|
232 |
)
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
with gr.Column(scale=1, visible=True):
|
235 |
mapping_dict = gr.Variable()
|
236 |
transcribed_text_df_finish = gr.Dataframe(
|
@@ -279,9 +307,9 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
279 |
|
280 |
transcribe_button.click(
|
281 |
custom_track.transcribe_text,
|
282 |
-
inputs=[
|
283 |
outputs=[
|
284 |
-
|
285 |
transcribed_text_df_finish,
|
286 |
mapping_dict,
|
287 |
# Hide
|
@@ -290,6 +318,14 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
290 |
],
|
291 |
)
|
292 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
clear_button.click(
|
294 |
lambda: (
|
295 |
(shutil.rmtree("./vis_data") if os.path.exists("./vis_data") else None, None)[1],
|
@@ -318,7 +354,7 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
318 |
control_line_segment,
|
319 |
output_line_from_region,
|
320 |
inputs_lines_to_transcribe,
|
321 |
-
|
322 |
control_htr,
|
323 |
inputs_lines_to_transcribe,
|
324 |
image_placeholder_htr,
|
|
|
1 |
import os
|
2 |
import shutil
|
3 |
|
4 |
+
import evaluate
|
5 |
import gradio as gr
|
6 |
|
7 |
from helper.examples.examples import DemoImages
|
8 |
+
from helper.text.text_howto import TextHowTo
|
9 |
from src.htr_pipeline.gradio_backend import CustomTrack, SingletonModelLoader
|
10 |
|
11 |
model_loader = SingletonModelLoader()
|
|
|
14 |
|
15 |
images_for_demo = DemoImages()
|
16 |
|
17 |
+
cer_metric = evaluate.load("cer")
|
18 |
+
|
19 |
+
|
20 |
with gr.Blocks() as stepwise_htr_tool_tab:
|
21 |
with gr.Tabs():
|
22 |
with gr.Tab("1. Region Segmentation"):
|
23 |
+
with gr.Row():
|
24 |
+
with gr.Accordion("Info", open=False) as example_accord:
|
25 |
+
with gr.Row(equal_height=False):
|
26 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool)
|
27 |
+
with gr.Row():
|
28 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool_tab_intro)
|
29 |
+
with gr.Row():
|
30 |
+
with gr.Tabs():
|
31 |
+
with gr.Tab("1. Region Segmentation"):
|
32 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool_tab1)
|
33 |
+
with gr.Tab("2. Line Segmentation"):
|
34 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool_tab2)
|
35 |
+
with gr.Tab("3. Transcribe Text"):
|
36 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool_tab3)
|
37 |
+
with gr.Tab("4. Explore Results"):
|
38 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool_tab4)
|
39 |
+
gr.Markdown(TextHowTo.stepwise_htr_tool_end)
|
40 |
with gr.Row():
|
41 |
with gr.Column(scale=2):
|
42 |
vis_data_folder_placeholder = gr.Markdown(visible=False)
|
|
|
47 |
label="Image to Region segment",
|
48 |
# type="numpy",
|
49 |
tool="editor",
|
50 |
+
height=400,
|
51 |
)
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
with gr.Row():
|
54 |
clear_button = gr.Button("Clear", variant="secondary", elem_id="clear_button")
|
55 |
|
|
|
59 |
elem_id="region_segment_button",
|
60 |
)
|
61 |
|
62 |
+
with gr.Group():
|
63 |
+
with gr.Accordion("Region segment settings:", open=False):
|
64 |
+
with gr.Row():
|
65 |
+
reg_pred_score_threshold_slider = gr.Slider(
|
66 |
+
minimum=0.4,
|
67 |
+
maximum=1,
|
68 |
+
value=0.5,
|
69 |
+
step=0.05,
|
70 |
+
label="P-threshold",
|
71 |
+
info="""Filter and determine the confidence score
|
72 |
+
required for a prediction score to be considered""",
|
73 |
+
)
|
74 |
+
reg_containments_threshold_slider = gr.Slider(
|
75 |
+
minimum=0,
|
76 |
+
maximum=1,
|
77 |
+
value=0.5,
|
78 |
+
step=0.05,
|
79 |
+
label="C-threshold",
|
80 |
+
info="""The minimum required overlap or similarity
|
81 |
+
for a detected region or object to be considered valid""",
|
82 |
+
)
|
83 |
+
|
84 |
+
with gr.Row():
|
85 |
+
region_segment_model_dropdown = gr.Dropdown(
|
86 |
+
choices=["Riksarkivet/RmtDet_region"],
|
87 |
+
value="Riksarkivet/RmtDet_region",
|
88 |
+
label="Region segment model",
|
89 |
+
info="Will add more models later!",
|
90 |
+
)
|
91 |
+
|
92 |
with gr.Accordion("Example images to use:", open=False) as example_accord:
|
93 |
gr.Examples(
|
94 |
examples=images_for_demo.examples_list,
|
|
|
98 |
)
|
99 |
|
100 |
with gr.Column(scale=3):
|
101 |
+
output_region_image = gr.Image(label="Segmented regions", type="numpy", height=550)
|
102 |
|
103 |
##############################################
|
104 |
with gr.Tab("2. Line Segmentation"):
|
|
|
210 |
|
211 |
with gr.Column(scale=3):
|
212 |
with gr.Row():
|
213 |
+
transcribed_text = gr.Textbox(
|
214 |
+
label="Transcribed text",
|
215 |
+
info="Transcribed text is being streamed back from the HTR-model",
|
216 |
+
lines=25,
|
217 |
+
value="",
|
|
|
|
|
|
|
218 |
)
|
219 |
|
220 |
#####################################
|
|
|
238 |
columns=[3],
|
239 |
rows=[3],
|
240 |
# object_fit="contain",
|
241 |
+
height=250,
|
242 |
preview=True,
|
243 |
container=False,
|
244 |
)
|
245 |
|
246 |
dataframe_text_index = gr.Textbox(
|
247 |
label="Text from DataFrame selection",
|
248 |
+
placeholder="Select row from the DataFrame.",
|
|
|
249 |
interactive=False,
|
250 |
)
|
251 |
|
252 |
+
gt_text_index = gr.Textbox(
|
253 |
+
label="Ground Truth",
|
254 |
+
placeholder="Provide the ground truth, if available.",
|
255 |
+
interactive=True,
|
256 |
+
)
|
257 |
+
with gr.Row(equal_height=False):
|
258 |
+
calc_cer_button = gr.Button("Calculate CER", variant="primary", visible=True)
|
259 |
+
|
260 |
+
cer_output = gr.Textbox(label="CER:")
|
261 |
+
|
262 |
with gr.Column(scale=1, visible=True):
|
263 |
mapping_dict = gr.Variable()
|
264 |
transcribed_text_df_finish = gr.Dataframe(
|
|
|
307 |
|
308 |
transcribe_button.click(
|
309 |
custom_track.transcribe_text,
|
310 |
+
inputs=[inputs_lines_to_transcribe],
|
311 |
outputs=[
|
312 |
+
transcribed_text,
|
313 |
transcribed_text_df_finish,
|
314 |
mapping_dict,
|
315 |
# Hide
|
|
|
318 |
],
|
319 |
)
|
320 |
|
321 |
+
def compute_cer(dataframe_text_index, gt_text_index):
|
322 |
+
if gt_text_index is not None and gt_text_index.strip() != "":
|
323 |
+
return cer_metric.compute(predictions=[dataframe_text_index], references=[gt_text_index])
|
324 |
+
else:
|
325 |
+
return "Ground truth not provided"
|
326 |
+
|
327 |
+
calc_cer_button.click(compute_cer, inputs=[dataframe_text_index, gt_text_index], outputs=cer_output)
|
328 |
+
|
329 |
clear_button.click(
|
330 |
lambda: (
|
331 |
(shutil.rmtree("./vis_data") if os.path.exists("./vis_data") else None, None)[1],
|
|
|
354 |
control_line_segment,
|
355 |
output_line_from_region,
|
356 |
inputs_lines_to_transcribe,
|
357 |
+
transcribed_text,
|
358 |
control_htr,
|
359 |
inputs_lines_to_transcribe,
|
360 |
image_placeholder_htr,
|