Spaces:
Sleeping
Sleeping
små fix
Browse files- helper/text/help/faq_discussion/faq.md +4 -4
- helper/text/text_app.py +1 -1
- tabs/htr_tool.py +1 -1
- tabs/stepwise_htr_tool.py +3 -3
helper/text/help/faq_discussion/faq.md
CHANGED
@@ -4,10 +4,10 @@
|
|
4 |
**A**: Absolutely. Uploaded files are not saved or stored.
|
5 |
|
6 |
**Q**: <u>Why am I always in a queue?</u>
|
7 |
-
**A**: This is due to hardware constraints and rate limits imposed by Hugging Face. For alternative ways to use the app, refer to the **Documentation**
|
8 |
|
9 |
-
**Q**: <u>Why is
|
10 |
-
**A**: The current speed is due to hardware limitations and the present state of the code. However, we plan to update the application in future releases, which will significantly improve
|
11 |
|
12 |
-
**Q**: <u>Is
|
13 |
**A**: Not currently, but we plan to add this feature in the future.
|
|
|
4 |
**A**: Absolutely. Uploaded files are not saved or stored.
|
5 |
|
6 |
**Q**: <u>Why am I always in a queue?</u>
|
7 |
+
**A**: This is due to hardware constraints and rate limits imposed by Hugging Face. For alternative ways to use the app, refer to the tab > **Documentation** under > **Duplication for Own Use & API**.
|
8 |
|
9 |
+
**Q**: <u>Why is Fast track so slow?</u>
|
10 |
+
**A**: The current speed is due to hardware limitations and the present state of the code. However, we plan to update the application in future releases, which will significantly improve run time and performance of the application.
|
11 |
|
12 |
+
**Q**: <u>Is possible to run Fast track or the API on multiple images on same time?</u>
|
13 |
**A**: Not currently, but we plan to add this feature in the future.
|
helper/text/text_app.py
CHANGED
@@ -6,7 +6,7 @@ class TextApp:
|
|
6 |
|
7 |
<h1><center> HTRFLOW </center></h1>
|
8 |
|
9 |
-
<p><center>Explore AI models for
|
10 |
|
11 |
title_markdown_img = """
|
12 |
<a href="https://riksarkivet.se">
|
|
|
6 |
|
7 |
<h1><center> HTRFLOW </center></h1>
|
8 |
|
9 |
+
<p><center>Explore AI models for Handwritten Text Recogntion developed by the Swedish National Archives </center></p>"""
|
10 |
|
11 |
title_markdown_img = """
|
12 |
<a href="https://riksarkivet.se">
|
tabs/htr_tool.py
CHANGED
@@ -58,7 +58,7 @@ with gr.Blocks() as htr_tool_tab:
|
|
58 |
)
|
59 |
|
60 |
selection_text_from_image_viewer = gr.Textbox(
|
61 |
-
interactive=False, label="Text Selector", info="Select a
|
62 |
)
|
63 |
|
64 |
with gr.Tab("Compare") as tab_model_compare_selector:
|
|
|
58 |
)
|
59 |
|
60 |
selection_text_from_image_viewer = gr.Textbox(
|
61 |
+
interactive=False, label="Text Selector", info="Select a line on Image Viewer to return text"
|
62 |
)
|
63 |
|
64 |
with gr.Tab("Compare") as tab_model_compare_selector:
|
tabs/stepwise_htr_tool.py
CHANGED
@@ -197,7 +197,7 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
197 |
)
|
198 |
|
199 |
with gr.Row():
|
200 |
-
copy_textarea = gr.Button("Copy
|
201 |
|
202 |
transcribe_button = gr.Button("Run", variant="primary", visible=True, scale=1)
|
203 |
|
@@ -259,14 +259,14 @@ with gr.Blocks() as stepwise_htr_tool_tab:
|
|
259 |
)
|
260 |
|
261 |
with gr.Row(equal_height=False):
|
262 |
-
cer_output = gr.Textbox(label="
|
263 |
gr.Markdown("")
|
264 |
calc_cer_button = gr.Button("Calculate CER", variant="primary", visible=True)
|
265 |
|
266 |
with gr.Column(scale=1, visible=True):
|
267 |
mapping_dict = gr.Variable()
|
268 |
transcribed_text_df_finish = gr.Dataframe(
|
269 |
-
headers=["Transcribed text", "
|
270 |
max_rows=14,
|
271 |
col_count=(2, "fixed"),
|
272 |
wrap=True,
|
|
|
197 |
)
|
198 |
|
199 |
with gr.Row():
|
200 |
+
copy_textarea = gr.Button("Copy text", variant="secondary", visible=True, scale=1)
|
201 |
|
202 |
transcribe_button = gr.Button("Run", variant="primary", visible=True, scale=1)
|
203 |
|
|
|
259 |
)
|
260 |
|
261 |
with gr.Row(equal_height=False):
|
262 |
+
cer_output = gr.Textbox(label="Character Error Rate")
|
263 |
gr.Markdown("")
|
264 |
calc_cer_button = gr.Button("Calculate CER", variant="primary", visible=True)
|
265 |
|
266 |
with gr.Column(scale=1, visible=True):
|
267 |
mapping_dict = gr.Variable()
|
268 |
transcribed_text_df_finish = gr.Dataframe(
|
269 |
+
headers=["Transcribed text", "Prediction score"],
|
270 |
max_rows=14,
|
271 |
col_count=(2, "fixed"),
|
272 |
wrap=True,
|