import gradio as gr from helper.examples.examples import DemoImages from src.htr_pipeline.gradio_backend import FastTrack, SingletonModelLoader model_loader = SingletonModelLoader() fast_track = FastTrack(model_loader) images_for_demo = DemoImages() with gr.Blocks() as htr_tool_tab: with gr.Row(equal_height=True): with gr.Column(scale=2): with gr.Row(): fast_track_input_region_image = gr.Image( label="Image to run HTR on", type="numpy", tool="editor", elem_id="image_upload", height=395 ) with gr.Row(): # with gr.Group(): # callback = gr.CSVLogger() # # hf_writer = gr.HuggingFaceDatasetSaver(HF_API_TOKEN, "htr_pipelin_flags") # flagging_button = gr.Button( # "Flag", # variant="secondary", # visible=True, # ).style(full_width=True) # radio_file_input = gr.Radio( # value="Text file", choices=["Text file ", "Page XML file "], label="What kind file output?" # ) radio_file_input = gr.CheckboxGroup( choices=["Txt", "XML"], value=["Txt"], label="Output file extension", # info="Only txt and page xml is supported for now!", ) htr_pipeline_button = gr.Button( "Run HTR", variant="primary", visible=True, elem_id="run_pipeline_button", ).style(full_width=False) with gr.Group(): with gr.Row(): fast_file_downlod = gr.File(label="Download output file", visible=False) with gr.Row(): with gr.Accordion("Example images to use:", open=False) as fast_example_accord: fast_name_files_placeholder = gr.Markdown(visible=False) gr.Examples( examples=images_for_demo.examples_list, inputs=[fast_name_files_placeholder, fast_track_input_region_image], label="Example images", examples_per_page=3, ) with gr.Column(scale=4): fast_track_output_image = gr.Image(label="HTR results visualizer", type="numpy", tool="editor", height=650) with gr.Row(visible=False) as api_placeholder: htr_pipeline_button_api = gr.Button( "Run pipeline", variant="primary", visible=False, ).style(full_width=False) xml_rendered_placeholder_for_api = gr.Textbox(visible=False) htr_pipeline_button.click( fast_track.segment_to_xml, inputs=[fast_track_input_region_image, radio_file_input], outputs=[fast_track_output_image, fast_file_downlod, fast_file_downlod], ) htr_pipeline_button_api.click( fast_track.segment_to_xml_api, inputs=[fast_track_input_region_image], outputs=[xml_rendered_placeholder_for_api], api_name="predict", )