Spaces:
Sleeping
Sleeping
File size: 4,830 Bytes
189cd2f 02223fb 189cd2f 02223fb 189cd2f 02223fb af912a1 02223fb 7df068a 02223fb af912a1 02223fb af912a1 02223fb af912a1 02223fb af912a1 02223fb af912a1 7df068a cd2cc59 af912a1 02223fb 7df068a 02223fb af912a1 cd2cc59 af912a1 cd2cc59 02223fb af912a1 02223fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import eventlet
eventlet.monkey_patch()
from dotenv import load_dotenv
from flask import Flask, request, render_template
from flask_cors import CORS
from flask_socketio import SocketIO, emit
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
from langchain.retrievers.document_compressors import EmbeddingsFilter
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers import EnsembleRetriever
from langchain_community.vectorstores import FAISS
from langchain_groq import ChatGroq
from langchain import hub
import pickle
import os
# Load environment variables
load_dotenv(".env")
USER_AGENT = os.getenv("USER_AGENT")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
SECRET_KEY = os.getenv("SECRET_KEY")
SESSION_ID_DEFAULT = "abc123"
# Set environment variables
os.environ['USER_AGENT'] = USER_AGENT
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
os.environ["TOKENIZERS_PARALLELISM"] = 'true'
# Initialize Flask app and SocketIO with CORS
app = Flask(__name__)
CORS(app)
socketio = SocketIO(app, cors_allowed_origins="*")
app.config['SESSION_COOKIE_SECURE'] = True # Use HTTPS
app.config['SESSION_COOKIE_HTTPONLY'] = True
app.config['SECRET_KEY'] = SECRET_KEY
embed_model = HuggingFaceEmbeddings(model_name="Alibaba-NLP/gte-multilingual-base", model_kwargs={"trust_remote_code":True})
llm = ChatGroq(
model="llama-3.1-8b-instant",
temperature=0.0,
max_tokens=1024,
max_retries=2
)
excel_vectorstore = FAISS.load_local(folder_path="./faiss_excel_doc_index", embeddings=embed_model, allow_dangerous_deserialization=True)
word_vectorstore = FAISS.load_local(folder_path="./faiss_recursive_split_word_doc_index", embeddings=embed_model, allow_dangerous_deserialization=True)
excel_vectorstore.merge_from(word_vectorstore)
combined_vectorstore = excel_vectorstore
with open('combined_recursive_keyword_retriever.pkl', 'rb') as f:
combined_keyword_retriever = pickle.load(f)
combined_keyword_retriever.k = 1000
semantic_retriever = combined_vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 100})
# initialize the ensemble retriever
ensemble_retriever = EnsembleRetriever(
retrievers=[combined_keyword_retriever, semantic_retriever], weights=[0.5, 0.5]
)
embeddings_filter = EmbeddingsFilter(embeddings=embed_model, similarity_threshold=0.4)
compression_retriever = ContextualCompressionRetriever(
base_compressor=embeddings_filter, base_retriever=semantic_retriever
)
template = """
User Instructions:
You are an Arabic AI Assistant focused on providing clear, concise responses.
Always answer truthfully. If the user query is irrelevant to the provided CONTEXT, respond stating the reason.
Generate responses in Arabic. Format any English words and numbers appropriately for clarity.
Round off numbers with decimal integers to two decimal integers.
Use bullet points or numbered lists where applicable for better organization.
Provide detailed yet concise answers, covering all important aspects.
Remember, responding outside the CONTEXT may lead to the termination of the interaction.
CONTEXT: {context}
Query: {question}
After generating your response, ensure proper formatting and text direction of Arabic and English words/numbers. Return only the AI-generated answer.
"""
prompt = ChatPromptTemplate.from_template(template)
output_parser = StrOutputParser()
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_chain = (
{"context": compression_retriever.with_config(run_name="Docs") | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| output_parser
)
# Function to handle WebSocket connection
@socketio.on('connect')
def handle_connect():
emit('connection_response', {'message': 'Connected successfully.'}, room=request.sid)
@socketio.on('ping')
def handle_ping(data):
emit('ping_response', {'message': 'Healthy Connection.'}, room=request.sid)
# Function to handle WebSocket disconnection
@socketio.on('disconnect')
def handle_disconnect():
emit('connection_response', {'message': 'Disconnected successfully.'})
# Function to handle WebSocket messages
@socketio.on('message')
def handle_message(data):
question = data.get('question')
try:
for chunk in rag_chain.stream(question):
emit('response', chunk, room=request.sid)
except Exception as e:
emit('response', {"error": "An error occurred while processing your request."}, room=request.sid)
# Home route
@app.route("/")
def index_view():
return render_template('chat.html')
# Main function to run the app
if __name__ == '__main__':
socketio.run(app, debug=True)
|